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Talk Outline 

●  Shadow and how it works 

●  Tor research case study:  
Kernel-Informed Socket Transport 

●  Future directions 
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Why should you care? 

●  Expedite research and development 

●  Evaluate software mods or attacks without 
harming real users 

●  Understand holistic effects before deployment 

●  Shadow supports simulation for new 
applications 
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EXPERIMENTATION OPTIONS 
Thread 0 
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Desirable Properties 

Goal! 

Scalable Reproducible 

Accurate 

Controllable 
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Network Research Methods 
Approaches Problems 
Live Network Hard to manage, lengthy deployment, 

security risks 
PlanetLab Hard to manage, bad at modeling,  

not scalable 
Simulation Not generalizable, inaccurate 
Emulation Larger overhead, kernel complexities 
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Simulation vs Emulation 

●  Time (simulation wins) 
–  Real time vs “as-fast-as-possible” execution 
–  Emulation time must advance in synchrony with wall-

clock time, or the virtual environment may become 
“sluggish” or unresponsive 

–  Easier to slow down than to speed up execution! 
 

●  Realism (emulation wins) 
–  Uses host OS kernel, protocols, applications 
–  Can run anything that runs on OS 
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SHADOW 
Thread 1 
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What is Shadow? 

●  Parallel discrete-event network simulator 

●  Models routing, latency, bandwidth 

●  Simulates time, CPU, OS 
–  TCP/UDP, sockets, queuing, threading 

●  Emulates POSIX C API on Linux 

●  Directly executes apps as plug-ins 9 



Simulation Environment 
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Hosts 

Logical 
processing units 

with  
independent state 



Simulation Environment 
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Hosts Network 

Routing elements 
(nodes, links) and 

attributes (bandwidth, 
latency, packet loss) 



Simulation Environment 
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Holds current 
virtual time 

(distinct from 
physical time) 

Hosts Network Global 
Clock 



Simulation Environment 

13 

Processing task 
for a host at a 
specific time 

Hosts Network Global 
Clock 

Event 



Simulation Environment 
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Holds events 
sorted by time 

(min heap) 

Hosts Network Global 
Clock 

Event Event 
Queue 



Discrete Event Engine 
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•  Facilitate communication: 
exchange events between 
hosts through the network 

•  “as-fast-as-possible” 
execution 



Discrete Event Engine 
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u While !end 
u Get next event 
u Update clock 
u Process event 

u Enqueue events 

•  Facilitate communication: 
exchange events between 
hosts through the network 

•  “as-fast-as-possible” 
execution 



Parallel Discrete Event Engine 
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Host workloads 
split among 

physical threads 

Each physical 
thread has event 

queue 

Synchronization 
problem! 



Conservative Synchronization 

●  Ensure causality 
–  events must occur in correct order (not in the past) 

18 

Time barrier 

Safe execution 
interval 

(min latency) 

Future 

Global time 

Local times 



Virtual Network Routing 

●  Network graph model 
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Latency and 
packet loss 

Host connection 
points (IPs) 

u If complete: 
u Lookup link 
u Get latency 

u Else 
u Compute shortest path 
u Sum link latencies 
u Cache result 



Executing Applications on Hosts 

●  Load programs as  
dynamic shared object libraries 
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Compile with Clang, extract 
state addresses with LLVM pass 

Addr Val 

0xA 0 

0xB 0 

… … 

Each program 
loaded only once 

per thread 



Virtual Process Management 

Save default 
values on initial 

load 

Addr Val 

0xA 0 

0xB 0 

… … 

Addr Val 

0xA 15 

0xB 87 

… … 

Addr Val 

0xA 22 

0xB 62 

… … 

Addr Val 

0xA 33 

0xB 85 

… … 

Addr Val 

0xA 5 

0xB 59 

… … 

Copy state for each 
virtual process 
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Virtual Process Management 

Addr Val 

0xA 0 

0xB 0 

… … 

Addr Val 

0xA 15 

0xB 87 

… … 

Addr Val 

0xA 22 

0xB 62 

… … 

Addr Val 

0xA 33 

0xB 85 

… … 

Addr Val 

0xA 5 

0xB 59 

… … 

Swap state into/out of 
memory as virtual 

processes are switched 

22 



Virtual Thread Management 
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Reentrant portable threads (rpth) 
•  async. thread-safe, user-land  

non-preemptive cooperative threading 
•  Uses make/set/get/swapcontext() magic 

to jump program stacks when 
EWOULDBLOCK 

Virtual thread layer 



Virtual Thread Management 

Shadow thread 

Each virtual process 
has a private  
rpth instance 
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Virtual Thread Management 

Shadow thread 

“main” thread 

Spawns an rpth 
thread to call the 
program main() 

function 
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Virtual Thread Management 

Shadow thread 

“main” thread 

spawned threads 

Program may spawn 
auxiliary threads 
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rpth scheduler (prog ctx) 

Execution Flow with rpth 

Swap in 
virtual process 
and rpth state 

Swap out 
virtual process 
and rpth state 

Return to Shadow thread 
when all spawned rpth 
threads would block: 
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LD_PRELOAD=libpreload.so (socket, write, pthread_create, …) 

Function Interposition 

28 

App 
Libraries 
(libc, …) 

rpth scheduler (prog ctx) 

Function calls are redirected 
to simulated counterpart 



Simulating a Kernel 

●  Sockets and queuing 
●  Network protocols – TCP, UDP 
●  Threading (pthread) 
●  Randomization (maintain determinism) 
●  CPU usage 
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KERNEL INFORMED SOCKET 
TRANSPORT 

Thread 2 

With John Geddes, Chris Wacek, Micah Sherr, and Paul Syverson 
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Anonymous Communication: Tor 
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This Talk 

●  Where is Tor slow? 
–  Measure public Tor and private Shadow-Tor networks 
–  Identify circuit scheduling and socket flushing problems 

●  Design KIST: Kernel-Informed Socket Transport 
–  Use TCP snd_cwnd to limit socket writes 

●  Evaluate KIST Performance and Security 
–  Reduces kernel and end-to-end circuit congestion 
–  Throughput attacks unaffected, speeds up latency attacks 
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Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 

33 



Relay Overview 
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Relay Overview 

TCP 

TCP 

TCP 

TCP 

TCP 

TCP 

TCP 

Tor circuits are 
multiplexed over a 

TCP transport 
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Relay Overview 

TCP 

TCP 

TCP 

TCP 

TCP 

TCP 
TCP 
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Relay Internals 
Kernel Input Kernel Output Tor Input Tor Output 

Tor Circuits 

Opportunities 
for traffic 

management 37 



Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 
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Live Tor Congestion - libkqtime 
Kernel Input Kernel Output Tor Input Tor Output 

Tor Circuits 
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Live Tor Congestion - libkqtime 
Kernel Input Kernel Output Tor Input Tor Output 

Tor Circuits 

tag match tag match 
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Live Tor Congestion - libkqtime 
Kernel Input Kernel Output Tor Input Tor Output 

Tor Circuits 

tag match tag match 
track cells 
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Shadow Network Simulation 

●  Enhanced Shadow with several missing TCP 
algorithms 

–  CUBIC congestion control 
–  Retransmission timers 
–  Selective acknowledgements (SACK) 
–  Forward acknowledgements (FACK) 
–  Fast retransmit/recovery 

●  Designed largest known private Tor network 
–  3600 relays and 12000 simultaneously active clients 
–  Internet topology graph: ~700k nodes and 1.3m links 
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Track the UID 

Shadow-Tor Congestion – UIDs 
UID 

UID Track the UID 
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Track the UID 

Shadow-Tor Congestion – UIDs 
UID 

UID Track the UID 

Kernel Input Kernel Output Tor 
Input 

Tor 
Output 

Tor Circuits 
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Tor and Shadow-Tor Congestion 
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Congestion occurs almost exclusively in 
outbound kernel buffers 

Shadow-Tor Live-Tor 
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Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 
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Analyzing Causes of Congestion 

Kernel Output Tor Output 
Tor Circuits 

Queuing delays in 
kernel output buffer 47 



Analyzing Causes of Congestion 

Kernel Output Tor Output 
Tor Circuits 

Queuing delays in 
kernel output buffer 

Problem 1: 
Circuit scheduling 

Problem 2: 
Flushing to Sockets 
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Problem 1: Circuit Scheduling 

Kernel Output Tor Output 
Tor Circuits 

Libevent schedules one 
connection at a time 49 



Problem 1: Circuit Scheduling 

Kernel Output Tor Output 
Tor Circuits 

Libevent schedules one 
connection at a time 

Tor only considers a 
subset of writable 

circuits 
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Problem 1: Circuit Scheduling 

Kernel Output Tor Output 
Tor Circuits 

Libevent schedules one 
connection at a time 

Tor only considers a 
subset of writable 

circuits 

Circuits from different 
connections are not 
prioritized correctly 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Queuing delays in 
kernel output buffer 

FIFO 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Worse priority traffic 
(high throughput flows) FIFO 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Better priority traffic 
(low throughput flows) 

Worse priority traffic 
(high throughput flows) FIFO 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Better priority traffic 
(low throughput flows) 

Must wait for kernel to flush 
socket to network (blocked 

on TCP cwnd) 

Worse priority traffic 
(high throughput flows) FIFO 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Better priority traffic 
(low throughput flows) 

Reduces effectiveness 
of circuit priority 

Worse priority traffic 
(high throughput flows) FIFO 
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Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 
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Ask the kernel, stupid! 

●  Utilize getsockopt and ioctl syscalls 

socket_space =  
sndbufcap – sndbuflen 

tcp_space =  
(cwnd – unacked) * mss 

sndbuflen 

sndbufcap  

unacked 

cwnd  
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Kernel-Informed Socket Transport 

●  Don’t write it if the kernel can’t send it; 
bound kernel writes by:  

–  Socket: min(socket_space, tcp_space) 
–  Global: upstream bandwidth capacity 

Solution to Problem 2 
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Kernel-Informed Socket Transport 

●  Don’t write it if the kernel can’t send it; 
bound kernel writes by:  

–  Socket: min(socket_space, tcp_space) 
–  Global: upstream bandwidth capacity 

●  Choose globally from all writable circuits 

Solution to Problem 1 
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Kernel-Informed Socket Transport 

●  Don’t write it if the kernel can’t send it; 
bound kernel writes by:  

–  Socket: min(socket_space, tcp_space) 
–  Global: upstream bandwidth capacity 

●  Choose globally from all writable circuits 

●  Try to write again before kernel starvation 
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KIST Reduces Kernel Congestion 
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KIST Increases Tor Congestion 
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KIST Reduces Circuit Congestion 
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KIST Improves Network Latency 
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Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 
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Traffic Correlation: Latency 

Hopper et.al. CCS’07 

Goal: narrow down 
potential locations of the 
client on a target circuit 
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Traffic Correlation: Latency 

Hopper et.al. CCS’07 

-Inject redirect or javascript 
-Start timer 
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Traffic Correlation: Latency 

GET 

Hopper et.al. CCS’07 

Request redirected page 
or embedded object 
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Traffic Correlation: Latency 

GET 

Hopper et.al. CCS’07 

-Stop timer 
-Estimate latency 
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Latency Attack 
| estimate – actual | 
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Latency Attack 
num pings until best estimate 
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Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Goal: find guard relay of 
the client on a target circuit 

73 



Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Probe throughput of 
all guard relays 
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Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Correlate 
throughput between 

exit and probes 
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Throughput Attack Results 
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think like an adversary 

shadow.github.io 
github.com/shadow 

robgjansen.com, @robgjansen 
rob.g.jansen@nrl.navy.mil 

Summary/Conclusion 

●  Shadow 
●  Where is Tor slow? 

–  KIST complements other performance 
enhancements, e.g. circuit priority 

●  Future work 
–  Optimize Shadow threading algorithms 
–  Distribute Shadow across processes/machines 


