
Shadow: Scalable Simulation
for Systems Security Research

CrySP Speaker Series on Privacy
University of Waterloo

January 20th, 2016

Rob Jansen
U.S. Naval Research Laboratory
rob.g.jansen@nrl.navy.mil
@robgjansen

Talk Outline

●  Shadow and how it works

●  Tor research case study:
Kernel-Informed Socket Transport

●  Future directions

2

Why should you care?

●  Expedite research and development

●  Evaluate software mods or attacks without
harming real users

●  Understand holistic effects before deployment

●  Shadow supports simulation for new
applications

3

EXPERIMENTATION OPTIONS
Thread 0

4

Desirable Properties

Goal!

Scalable Reproducible

Accurate

Controllable

5

Network Research Methods
Approaches Problems
Live Network Hard to manage, lengthy deployment,

security risks
PlanetLab Hard to manage, bad at modeling,

not scalable
Simulation Not generalizable, inaccurate
Emulation Larger overhead, kernel complexities

6

Simulation vs Emulation

●  Time (simulation wins)
–  Real time vs “as-fast-as-possible” execution
–  Emulation time must advance in synchrony with wall-

clock time, or the virtual environment may become
“sluggish” or unresponsive

–  Easier to slow down than to speed up execution!

●  Realism (emulation wins)
–  Uses host OS kernel, protocols, applications
–  Can run anything that runs on OS

7

SHADOW
Thread 1

8

What is Shadow?

●  Parallel discrete-event network simulator

●  Models routing, latency, bandwidth

●  Simulates time, CPU, OS
–  TCP/UDP, sockets, queuing, threading

●  Emulates POSIX C API on Linux

●  Directly executes apps as plug-ins 9

Simulation Environment

10

Hosts

Logical
processing units

with
independent state

Simulation Environment

11

Hosts Network

Routing elements
(nodes, links) and

attributes (bandwidth,
latency, packet loss)

Simulation Environment

12

Holds current
virtual time

(distinct from
physical time)

Hosts Network Global
Clock

Simulation Environment

13

Processing task
for a host at a
specific time

Hosts Network Global
Clock

Event

Simulation Environment

14

Holds events
sorted by time

(min heap)

Hosts Network Global
Clock

Event Event
Queue

Discrete Event Engine

15

•  Facilitate communication:
exchange events between
hosts through the network

•  “as-fast-as-possible”
execution

Discrete Event Engine

16

u While !end
u Get next event
u Update clock
u Process event

u Enqueue events

•  Facilitate communication:
exchange events between
hosts through the network

•  “as-fast-as-possible”
execution

Parallel Discrete Event Engine

17

Host workloads
split among

physical threads

Each physical
thread has event

queue

Synchronization
problem!

Conservative Synchronization

●  Ensure causality
–  events must occur in correct order (not in the past)

18

Time barrier

Safe execution
interval

(min latency)

Future

Global time

Local times

Virtual Network Routing

●  Network graph model

19

Latency and
packet loss

Host connection
points (IPs)

u If complete:
u Lookup link
u Get latency

u Else
u Compute shortest path
u Sum link latencies
u Cache result

Executing Applications on Hosts

●  Load programs as
dynamic shared object libraries

20

Compile with Clang, extract
state addresses with LLVM pass

Addr Val

0xA 0

0xB 0

… …

Each program
loaded only once

per thread

Virtual Process Management

Save default
values on initial

load

Addr Val

0xA 0

0xB 0

… …

Addr Val

0xA 15

0xB 87

… …

Addr Val

0xA 22

0xB 62

… …

Addr Val

0xA 33

0xB 85

… …

Addr Val

0xA 5

0xB 59

… …

Copy state for each
virtual process

21

Virtual Process Management

Addr Val

0xA 0

0xB 0

… …

Addr Val

0xA 15

0xB 87

… …

Addr Val

0xA 22

0xB 62

… …

Addr Val

0xA 33

0xB 85

… …

Addr Val

0xA 5

0xB 59

… …

Swap state into/out of
memory as virtual

processes are switched

22

Virtual Thread Management

23

Reentrant portable threads (rpth)
•  async. thread-safe, user-land

non-preemptive cooperative threading
•  Uses make/set/get/swapcontext() magic

to jump program stacks when
EWOULDBLOCK

Virtual thread layer

Virtual Thread Management

Shadow thread

Each virtual process
has a private
rpth instance

24

Virtual Thread Management

Shadow thread

“main” thread

Spawns an rpth
thread to call the
program main()

function

25

Virtual Thread Management

Shadow thread

“main” thread

spawned threads

Program may spawn
auxiliary threads

26

rpth scheduler (prog ctx)

Execution Flow with rpth

Swap in
virtual process
and rpth state

Swap out
virtual process
and rpth state

Return to Shadow thread
when all spawned rpth
threads would block:

27

LD_PRELOAD=libpreload.so (socket, write, pthread_create, …)

Function Interposition

28

App
Libraries
(libc, …)

rpth scheduler (prog ctx)

Function calls are redirected
to simulated counterpart

Simulating a Kernel

●  Sockets and queuing
●  Network protocols – TCP, UDP
●  Threading (pthread)
●  Randomization (maintain determinism)
●  CPU usage

29

KERNEL INFORMED SOCKET
TRANSPORT

Thread 2

With John Geddes, Chris Wacek, Micah Sherr, and Paul Syverson
30

Anonymous Communication: Tor

31

This Talk

●  Where is Tor slow?
–  Measure public Tor and private Shadow-Tor networks
–  Identify circuit scheduling and socket flushing problems

●  Design KIST: Kernel-Informed Socket Transport
–  Use TCP snd_cwnd to limit socket writes

●  Evaluate KIST Performance and Security
–  Reduces kernel and end-to-end circuit congestion
–  Throughput attacks unaffected, speeds up latency attacks

32

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

33

Relay Overview

34

Relay Overview

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Tor circuits are
multiplexed over a

TCP transport
35

Relay Overview

TCP

TCP

TCP

TCP

TCP

TCP
TCP

36

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Opportunities
for traffic

management 37

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

38

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

39

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

tag match tag match

40

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

tag match tag match
track cells

41

Shadow Network Simulation

●  Enhanced Shadow with several missing TCP
algorithms

–  CUBIC congestion control
–  Retransmission timers
–  Selective acknowledgements (SACK)
–  Forward acknowledgements (FACK)
–  Fast retransmit/recovery

●  Designed largest known private Tor network
–  3600 relays and 12000 simultaneously active clients
–  Internet topology graph: ~700k nodes and 1.3m links

42

Track the UID

Shadow-Tor Congestion – UIDs
UID

UID Track the UID

43

Track the UID

Shadow-Tor Congestion – UIDs
UID

UID Track the UID

Kernel Input Kernel Output Tor
Input

Tor
Output

Tor Circuits

44

Tor and Shadow-Tor Congestion

10�1 100 101 102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

10�1 100 101 102 103

Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

Congestion occurs almost exclusively in
outbound kernel buffers

Shadow-Tor Live-Tor

45

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

46

Analyzing Causes of Congestion

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer 47

Analyzing Causes of Congestion

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer

Problem 1:
Circuit scheduling

Problem 2:
Flushing to Sockets

48

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time 49

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time

Tor only considers a
subset of writable

circuits

50

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time

Tor only considers a
subset of writable

circuits

Circuits from different
connections are not
prioritized correctly

51

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer

FIFO

52

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Worse priority traffic
(high throughput flows) FIFO

53

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Worse priority traffic
(high throughput flows) FIFO

54

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Must wait for kernel to flush
socket to network (blocked

on TCP cwnd)

Worse priority traffic
(high throughput flows) FIFO

55

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Reduces effectiveness
of circuit priority

Worse priority traffic
(high throughput flows) FIFO

56

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

57

Ask the kernel, stupid!

●  Utilize getsockopt and ioctl syscalls

socket_space =
sndbufcap – sndbuflen

tcp_space =
(cwnd – unacked) * mss

sndbuflen

sndbufcap

unacked

cwnd

58

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

Solution to Problem 2

59

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

●  Choose globally from all writable circuits

Solution to Problem 1

60

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

●  Choose globally from all writable circuits

●  Try to write again before kernel starvation

61

KIST Reduces Kernel Congestion

10�1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

62

KIST Increases Tor Congestion

10�1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

63

KIST Reduces Circuit Congestion

0 500 1000 1500 2000
Time (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

64

KIST Improves Network Latency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

0.5 1 2 4 8
0.4

0.6

0.8

1.0

65

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

66

Traffic Correlation: Latency

Hopper et.al. CCS’07

Goal: narrow down
potential locations of the
client on a target circuit

67

Traffic Correlation: Latency

Hopper et.al. CCS’07

-Inject redirect or javascript
-Start timer

68

Traffic Correlation: Latency

GET

Hopper et.al. CCS’07

Request redirected page
or embedded object

69

Traffic Correlation: Latency

GET

Hopper et.al. CCS’07

-Stop timer
-Estimate latency

70

Latency Attack
| estimate – actual |

0 50 100 150 200 250
Difference (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

71

Latency Attack
num pings until best estimate

0 500 1000 1500 2000
Cumulative Number of Pings

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

72

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Goal: find guard relay of
the client on a target circuit

73

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Probe throughput of
all guard relays

74

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Correlate
throughput between

exit and probes

75

Throughput Attack Results

�0.4�0.3�0.2�0.10.0 0.1 0.2 0.3 0.4 0.5
Correlation Score

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

76

think like an adversary

shadow.github.io
github.com/shadow

robgjansen.com, @robgjansen
rob.g.jansen@nrl.navy.mil

Summary/Conclusion

●  Shadow
●  Where is Tor slow?

–  KIST complements other performance
enhancements, e.g. circuit priority

●  Future work
–  Optimize Shadow threading algorithms
–  Distribute Shadow across processes/machines

