Shadow: Simple HPC for Systems Security Research

Invited Talk Kansas State University September 25th, 2013

Rob Jansen U.S. Naval Research Laboratory rob.g.jansen@nrl.navy.mil

Outline

- Experimentation Ideology
- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - Research: the Sniper Attack Against Tor

Outline

Experimentation Ideology

- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - Research: the Sniper Attack Against Tor

Properties of Experimentation

Network Research

Approaches	Problems
Live Network	Hard to manage, lengthy deployment, security risks
PlanetLab	Hard to manage, bad at modeling, not scalable
Simulation	Not generalizable, inaccurate
Emulation	Large overhead, kernel complexities

Testbed Trade-offs

	Controllable	Reproducible	Scalable	Accuracy	Convenient
Live Network			X	X	
PlanetLab				?	
Simulation	X	X	X		X
Emulation	X				X
Shadow	X	X	X	?	X

Outline

- Experimentation Ideology
- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - Research: the Sniper Attack Against Tor

What is Shadow?

- Discrete event network simulator
- Runs real applications without modification
- Simulates time, network, crypto, CPU
- Models routing, latency, bandwidth
- Single Linux box without root privileges

Shadow's Capabilities

Data	Application network process to application
Data	Presentation data representation & encryption*
Data	Session interhost communication
Segments	Transport end-to-end connections & reliability
Packets	Network path determination & IP (logical addressing)
Frames	Data Link MAC & LLC (physical addressing)
Bits	Physical media, signal, & binary transmission

Bootstrapping Shadow

Virtual Network Configuration

Virtual Host Configuration

Simulation Engine

Program Layout

Shadow Engine (shadow-bin) Shadow Plug-in (application +wrapper)

Plug-in Wrapper Hooks

plugin_init()
new_instance(argv, argc)
free_instance()
instance_notify()

Shadow Engine (shadow-bin) Shadow Plug-in (application +wrapper)

LD_PRELOAD=/home/rob/libpreload.so

libpreload (socket, write, ...)

Shadow Engine (shadow-bin) Shadow Plug-in (application +wrapper)

LD_PRELOAD=/home/rob/libpreload.so

libpreload (*socket, write,* ...)

LD_PRELOAD=/home/rob/libpreload.so

libpreload (socket, write, ...)

LD_PRELOAD=/home/rob/libpreload.so

libpreload (socket, write, ...)

LD_PRELOAD=/home/rob/libpreload.so

libpreload (socket, write, ...)

Virtual Context Switching

Virtual Context Switching

Shadow-Tor's Accuracy

Shadow-Tor's Scalability

Memory: 20-30 MiB per virtual Tor host

Outline

- Experimentation Ideology
- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - Research: the Sniper Attack Against Tor

The Tor Anonymity Network

Tor protocol aware

Outline

- Experimentation Ideology
- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - *Research: the Sniper Attack Against Tor

*Joint with Aaron Johnson, Florian Tschorsch, Björn Scheuermann

entr

One TCP *Connection* Between Each Relay, Multiple *Circuits*

exi

entr

One TCP *Connection* Between Each Relay, Multiple *Circuits*

Multiple Application Streams

exi

Tor protocol aware

SENDME Signal Every 100 Cells

1000 Cell Limit

- Low-cost memory consumption attack
- Disables arbitrary Tor relays
- Anonymous if launched through Tor

Memory Consumed over Time

Mean RAM Consumed, 50 Relays

Mean BW Consumed, 50 Relays

Sniper Attack Defenses

- Authenticated SENDMEs
- Queue Length Limit
- Adaptive Circuit Killer

Circuit-Killer Defense

Sniper Attack Implications

Reduce Tor's capacity

Network Denial of Service

Influence path selection (selective DoS)

Deanonymization of hidden services

Outline

- Experimentation Ideology
- Shadow and its Design
- Use case:
 - Overview: the Distributed Tor Network
 - Research: the Sniper Attack Against Tor

shadow.github.io github.com/shadow

cs.umn.edu/~jansen rob.g.jansen@nrl.navy.mil

think like an adversary