On Traffic Analysis in Tor

Guest Lecture, ELE 574 Communications Security and Privacy Princeton University April 3rd, 2014

Dr. Rob Jansen U.S. Naval Research Laboratory rob.g.jansen@nrl.navy.mil

Anonymity with Tor

Traffic Correlation •• (<u>...</u>) •• (m)

Traffic Correlation Is traffic correlation realistic?

• Who might be in these positions?

Would a nation-state be willing to launch correlation attacks?

The biggest threat to Tor's anonymity

Anonymity with Onion Routing

• How does the volunteer resource model affect the vulnerability to correlation attacks?

Outline

Background

- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- . Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

• How can one measure how vulnerable real clients on the real network are to traffic correlation?

• Is there a difference between targeted correlation and general surveillance?

Security Metrics

Principles

- Probability distribution
- Measured on human timescales
- Based on real network and adversaries

Security Metrics

Principles

- Probability distribution
- Measured on human timescales
- Based on real network and adversaries

Metrics (Probability distributions)

- . Time until first path compromise
- Number of path compromises for a given user over given time period

Approach: Overview

Approach: User Profiles

Consider how users actually use Tor

Typical

Gmail/GChat

Chat R IRC **File Sharing**

BitTorrent

GCal/GDocs

Facebook

Facebook

Web search

Build a 20-minute trace of each activity. Capture destinations/ ports visited

Approach: User Profiles

"Replay" traces to generate streams based on user behavior

	Typical	Chat	File Sharing
 • 	2632 traces per week	• 135 traces per week	• 6768 traces per week
•	205 destinations 2 ports	 1 destinations 1 port	171 destinations118 ports

Approach: User Profiles

"Replay" traces to generate streams based on user behavior

Typical	Chat	File Sharing
• 2632 traces per	• 135 traces per	• 6768 traces per
• Is the user	model accurat	e? week 171 destinations
• What are the the second seco	he challenges?	• 118 ports

User Behavior Affects Relay Selection

Some applications are not well-supported by Tor due to exit policies

Approach: Tor Network Data

Consider the Tor network as it changes over a long period of time:

- Relays join and leave
- Bandwidth changes
- Exit/Guard designations change

Use Tor Project archives to obtain state of network over 3 to 6 months

Approach: Simulate Tor with TorPS

Combine User and Tor Network models using TorPS to produce the circuits Tor would use

Tor Network Data & User Profiles

Generated Tor circuits

TárPS

• Re-implements path selection

- Based on Tor stable version (0.2.3.25)
- Considers:
 - Bandwidth weighting
 - Exit policies
 - Guards and guard rotation
 - Hibernation
 - /16 and family conflicts
- Omits effects of network performance

Approach: Overview

Outline

Background

- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- . Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

Node Adversary

Node Adversary

Controls a fixed allotment of relays based on bandwidth budget

- We assume adversary has 100 MiB/s comparable to large family of relays
 - Adversaries apply 5/6th of bandwidth to guard relays and the rest to exit relays. (We found this to be the most effective allocation we tested.)

Node Adversary

Controls a fixed allotment of relays based on bandwidth budget

- We assume adversary has 100 MiB/s comparable to large family of relays
- Is 100 MiB/s realistic for an adversary?
 found this to be the most effective allocation we tested.)

Time to First Compromised Circuit

October 2012 – March 2013

Fraction of Compromised Streams

October 2012 – March 2013
Outline

Background

- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- . Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

Network Adversary

Network Adversary (m) (m)

- Adversary has fixed location
- Adversary may control multiple entitites

Network Adversary

• Should most users be concerned with a network adversary?

Simulating a Network Adversary

Build AS-level Graph (CAIDA)

Simulating a Network Adversary

Simulating a Network Adversary

Selecting Network Adversaries

- Rank each AS/IXP for each client location by frequency on entry or exit paths;
- Exclude src/dst ASes (compromises nearly all paths); and
- 3. Assign adversary to top *k* ASes or IXPs

Adversary Controls One AS

January 2013 – March 2013

Adversary Controls One IXP Organization

January 2013 – March 2013

Adversary Controls One IXP Organization

January 2013 – March 2013

• What if the adversary only controls one of the ends?

Outline

- Background
- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

Mittal et.al. CCS'11

Mittal et.al. CCS'11

Mittal et.al. CCS'11

• How is this attack "stealthy"?

Outline

- Background
- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

- Specialized Tor performance enhancements
 - Reducing load: traffic admission control
 - Reducing load, improving utilization: congestion control

Throughput drops Geddes et.al. to throttle rate

PETS'13

• Disconnect sybils

Geddes et.al. PETS'13

Geddes et.al. **PETS'13**

• Is this attack "stealthy"?

Induced Throttling Prototype

- Specialized Tor performance enhancements
 - Reducing load: traffic admission control
 - Reducing load, improving utilization: congestion control

Congestion Control

50 cells (max 500)

Congestion Control

Congestion Control

• Is this attack "stealthy"?

Induced Throttling Prototype

Geddes et.al. PETS'13

Induced Throttling Results

Geddes et.al. PETS'13

Smoothed throughput

Time

Outline

- Background
- Security against correlation (end-to-end)
 - Metrics and methodology
 - Node adversaries
 - Link adversaries
- Correlation attacks (partial)
 - Stealthy throughput
 - Induced throttling
 - Traffic admission control
 - Congestion control

Traffic Correlation

• How might we defend against ALL traffic correlation attacks?

rob.g.jansen@nrl.navy.mil

Conclusion

Tor is Efficient: ~65% Utilization

The Tor Project - https://metrics.torproject.org/