
Never Been KIST: Tor’s Congestion 
Management Blossoms with Kernel-
Informed Socket Transport 

23rd USENIX Security Symposium 
August 20th 2014 

Rob Jansen  US Naval Research Laboratory 
John Geddes  University of Minnesota 
Chris Wacek  Georgetown University 
Micah Sherr  Georgetown University 
Paul Syverson  US Naval Research Laboratory 



Anonymous Communication: Tor 



Tor is Slow!!! Research* 
●  PCTCP: Per-Circuit TCP-over-IPsec Transport for Anonymous Communication 

Overlay Networks (CCS ‘13) 

●  Reducing Latency in Tor Circuits with Unordered Delivery (FOCI ‘13) 

●  How Low Can You Go: Balancing Performance with Anonymity in Tor (PETS ‘13) 

●  The Path Less Travelled: Overcoming Tor's Bottlenecks with Traffic Splitting (PETS 
’13) 

●  An Empirical Evaluation of Relay Selection in Tor (NDSS ‘13) 

●  LIRA: Lightweight Incentivized Routing for Anonymity (NDSS ‘13) 

●  Improving Performance and Anonymity in the Tor Network (IPCCC ‘12) 

●  Enhancing Tor's Performance using Real-time Traffic Classification (CCS ’12) 

●  Torchestra: Reducing interactive traffic delays over Tor (WPES ‘12) 

●  Throttling Tor Bandwidth Parasites (USENIX Sec ‘12) 

●  LASTor: A Low-Latency AS-Aware Tor Client (Oakland ‘12) 

●  Congestion-aware Path Selection for Tor (FC ‘12) 
*Not a comprehensive list 
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This Talk 

●  Where is Tor slow? 
–  Measure public Tor and private Shadow-Tor networks 
–  Identify circuit scheduling and socket flushing problems 

●  Design KIST: Kernel-Informed Socket Transport 
–  Use TCP snd_cwnd to limit socket writes 

●  Evaluate KIST Performance and Security 
–  Reduces kernel and end-to-end circuit congestion 
–  Throughput attacks unaffected, speeds up latency attacks 



Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 
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Shadow Network Simulation 

●  Enhanced Shadow with several missing TCP 
algorithms 

–  CUBIC congestion control 
–  Retransmission timers 
–  Selective acknowledgements (SACK) 
–  Forward acknowledgements (FACK) 
–  Fast retransmit/recovery 

●  Designed largest known private Tor network 
–  3600 relays and 12000 simultaneously active clients 
–  Internet topology graph: ~700k nodes and 1.3m links 
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Tor and Shadow-Tor Congestion 
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Kernel Output Tor Output 
Tor Circuits 

Libevent schedules one 
connection at a time 

Tor only considers a 
subset of writable 

circuits 

Circuits from different 
connections are not 
prioritized correctly 



Problem 1: Circuit Scheduling 
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Problem 2: Flushing to Sockets 

Kernel Output Tor Output 
Tor Circuits 

Better priority traffic 
(low throughput flows) 

Reduces effectiveness 
of circuit priority 

Worse priority traffic 
(high throughput flows) FIFO 



Outline 

●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 



Ask the kernel, stupid! 

●  Utilize getsockopt and ioctl syscalls 

socket_space =  
sndbufcap – sndbuflen 

tcp_space =  
(cwnd – unacked) * mss 

sndbuflen 

sndbufcap  

unacked 

cwnd  



Kernel-Informed Socket Transport 

●  Don’t write it if the kernel can’t send it; 
bound kernel writes by:  

–  Socket: min(socket_space, tcp_space) 
–  Global: upstream bandwidth capacity 

Solution to Problem 2 
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Kernel-Informed Socket Transport 

●  Don’t write it if the kernel can’t send it; 
bound kernel writes by:  

–  Socket: min(socket_space, tcp_space) 
–  Global: upstream bandwidth capacity 

●  Choose globally from all writable circuits 

●  Try to write again before kernel starvation 



KIST Reduces Kernel Congestion 
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KIST Increases Tor Congestion 

10�1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST



KIST Reduces Circuit Congestion 
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KIST Improves Network Latency 
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●  Background 

●  Instrument Tor, measure congestion 

●  Analyze causes of congestion 

●  Design and evaluate KIST 
–  Performance 
–  Security 



Traffic Correlation: Latency 

Hopper et.al. CCS’07 

Goal: narrow down 
potential locations of the 
client on a target circuit 



Traffic Correlation: Latency 

Hopper et.al. CCS’07 

-Inject redirect or javascript 
-Start timer 



Traffic Correlation: Latency 

GET 

Hopper et.al. CCS’07 

Request redirected page 
or embedded object 



Traffic Correlation: Latency 

GET 

Hopper et.al. CCS’07 

-Stop timer 
-Estimate latency 



Latency Attack 
| estimate – actual | 
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Latency Attack 
num pings until best estimate 
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Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Goal: find guard relay of 
the client on a target circuit 



Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Probe throughput of 
all guard relays 



Traffic Correlation: Throughput 

Mittal et.al. CCS’11 

Correlate 
throughput between 

exit and probes 



Throughput Attack Results 
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Conclusion 

●  Where is Tor slow? 

●  KIST complements other performance 
enhancements, e.g. circuit priority 

●  Next steps 
–  Currently exploring various algorithmic optimizations 
–  Test KIST in the wild and deploy in Tor 



Questions? 

rob.g.jansen@nrl.navy.mil 
robgjansen.com 

github.com/robgjansen/libkqtime 
github.com/shadow 

 

think like an adversary 
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KIST Improves Network 
Throughput 
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