
Never Been KIST: Tor’s Congestion
Management Blossoms with Kernel-
Informed Socket Transport

23rd USENIX Security Symposium
August 20th 2014

Rob Jansen US Naval Research Laboratory
John Geddes University of Minnesota
Chris Wacek Georgetown University
Micah Sherr Georgetown University
Paul Syverson US Naval Research Laboratory

Anonymous Communication: Tor

Tor is Slow!!! Research*
●  PCTCP: Per-Circuit TCP-over-IPsec Transport for Anonymous Communication

Overlay Networks (CCS ‘13)

●  Reducing Latency in Tor Circuits with Unordered Delivery (FOCI ‘13)

●  How Low Can You Go: Balancing Performance with Anonymity in Tor (PETS ‘13)

●  The Path Less Travelled: Overcoming Tor's Bottlenecks with Traffic Splitting (PETS
’13)

●  An Empirical Evaluation of Relay Selection in Tor (NDSS ‘13)

●  LIRA: Lightweight Incentivized Routing for Anonymity (NDSS ‘13)

●  Improving Performance and Anonymity in the Tor Network (IPCCC ‘12)

●  Enhancing Tor's Performance using Real-time Traffic Classification (CCS ’12)

●  Torchestra: Reducing interactive traffic delays over Tor (WPES ‘12)

●  Throttling Tor Bandwidth Parasites (USENIX Sec ‘12)

●  LASTor: A Low-Latency AS-Aware Tor Client (Oakland ‘12)

●  Congestion-aware Path Selection for Tor (FC ‘12)
*Not a comprehensive list

Tor is Slow!!! Research*

*Not a comprehensive list

Where?

This Talk

●  Where is Tor slow?
–  Measure public Tor and private Shadow-Tor networks
–  Identify circuit scheduling and socket flushing problems

●  Design KIST: Kernel-Informed Socket Transport
–  Use TCP snd_cwnd to limit socket writes

●  Evaluate KIST Performance and Security
–  Reduces kernel and end-to-end circuit congestion
–  Throughput attacks unaffected, speeds up latency attacks

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

Relay Overview

Relay Overview

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Tor circuits are
multiplexed over a

TCP transport

Relay Overview

TCP

TCP

TCP

TCP

TCP

TCP
TCP

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Opportunities
for traffic

management

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

tag match tag match

Live Tor Congestion - libkqtime
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

tag match tag match
track cells

Shadow Network Simulation

●  Enhanced Shadow with several missing TCP
algorithms

–  CUBIC congestion control
–  Retransmission timers
–  Selective acknowledgements (SACK)
–  Forward acknowledgements (FACK)
–  Fast retransmit/recovery

●  Designed largest known private Tor network
–  3600 relays and 12000 simultaneously active clients
–  Internet topology graph: ~700k nodes and 1.3m links

Track the UID

Shadow-Tor Congestion – UIDs
UID

UID Track the UID

Track the UID

Shadow-Tor Congestion – UIDs
UID

UID Track the UID

Kernel Input Kernel Output Tor
Input

Tor
Output

Tor Circuits

Tor and Shadow-Tor Congestion

10�1 100 101 102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

10�1 100 101 102 103

Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

Congestion occurs almost exclusively in
outbound kernel buffers

Shadow-Tor Live-Tor

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

Analyzing Causes of Congestion

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer

Analyzing Causes of Congestion

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer

Problem 1:
Circuit scheduling

Problem 2:
Flushing to Sockets

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time

Tor only considers a
subset of writable

circuits

Problem 1: Circuit Scheduling

Kernel Output Tor Output
Tor Circuits

Libevent schedules one
connection at a time

Tor only considers a
subset of writable

circuits

Circuits from different
connections are not
prioritized correctly

Problem 1: Circuit Scheduling

Problem 1: Circuit Scheduling

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

160 180 200 220 240
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

40 60 80 100 120 140 160
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

Correctly differentiated No differentiation

Problem 1: Circuit Scheduling

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

160 180 200 220 240
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

40 60 80 100 120 140 160
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

Correctly differentiated No differentiation

99.775% of any two
circuits are unshared

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Queuing delays in
kernel output buffer

FIFO

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Worse priority traffic
(high throughput flows) FIFO

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Worse priority traffic
(high throughput flows) FIFO

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Must wait for kernel to flush
socket to network (blocked

on TCP cwnd)

Worse priority traffic
(high throughput flows) FIFO

Problem 2: Flushing to Sockets

Kernel Output Tor Output
Tor Circuits

Better priority traffic
(low throughput flows)

Reduces effectiveness
of circuit priority

Worse priority traffic
(high throughput flows) FIFO

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

Ask the kernel, stupid!

●  Utilize getsockopt and ioctl syscalls

socket_space =
sndbufcap – sndbuflen

tcp_space =
(cwnd – unacked) * mss

sndbuflen

sndbufcap

unacked

cwnd

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

Solution to Problem 2

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

●  Choose globally from all writable circuits

Solution to Problem 1

Kernel-Informed Socket Transport

●  Don’t write it if the kernel can’t send it;
bound kernel writes by:

–  Socket: min(socket_space, tcp_space)
–  Global: upstream bandwidth capacity

●  Choose globally from all writable circuits

●  Try to write again before kernel starvation

KIST Reduces Kernel Congestion

10�1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

KIST Increases Tor Congestion

10�1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

KIST Reduces Circuit Congestion

0 500 1000 1500 2000
Time (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

KIST Improves Network Latency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

0.5 1 2 4 8
0.4

0.6

0.8

1.0

Outline

●  Background

●  Instrument Tor, measure congestion

●  Analyze causes of congestion

●  Design and evaluate KIST
–  Performance
–  Security

Traffic Correlation: Latency

Hopper et.al. CCS’07

Goal: narrow down
potential locations of the
client on a target circuit

Traffic Correlation: Latency

Hopper et.al. CCS’07

-Inject redirect or javascript
-Start timer

Traffic Correlation: Latency

GET

Hopper et.al. CCS’07

Request redirected page
or embedded object

Traffic Correlation: Latency

GET

Hopper et.al. CCS’07

-Stop timer
-Estimate latency

Latency Attack
| estimate – actual |

0 50 100 150 200 250
Difference (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

Latency Attack
num pings until best estimate

0 500 1000 1500 2000
Cumulative Number of Pings

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Goal: find guard relay of
the client on a target circuit

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Probe throughput of
all guard relays

Traffic Correlation: Throughput

Mittal et.al. CCS’11

Correlate
throughput between

exit and probes

Throughput Attack Results

�0.4�0.3�0.2�0.10.0 0.1 0.2 0.3 0.4 0.5
Correlation Score

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

KIST

Conclusion

●  Where is Tor slow?

●  KIST complements other performance
enhancements, e.g. circuit priority

●  Next steps
–  Currently exploring various algorithmic optimizations
–  Test KIST in the wild and deploy in Tor

Questions?

rob.g.jansen@nrl.navy.mil
robgjansen.com

github.com/robgjansen/libkqtime
github.com/shadow

think like an adversary

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Network Input

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Split data into
socket buffers

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Read data from
sockets into Tor

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Process data
(encrypt/decrypt)

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Split cells into
circuit queues

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Circuits linked
to outgoing
connection

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Schedule cells

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Write data from Tor
into sockets

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Schedule data
for sending

Relay Internals
Kernel Input Kernel Output Tor Input Tor Output

Tor Circuits

Opportunities
for traffic

management

KIST Improves Network
Throughput

650 700 750 800 850 900 950
Throughput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

global

KIST

