U.S. NAVAL RESEARCH LABORATORY

Inside Job: Applying Traffic Analysis to Measure Tor from Within

*Rob Jansen, U.S. Naval Research Laboratory *Marc Juarez, *imec*-COSIC KU Leuven Rafael Gálvez, *imec*-COSIC KU Leuven Tariq Elahi, *imec*-COSIC KU Leuven Claudia Diaz, *imec*-COSIC KU Leuven

*equally credited authors

Rob Jansen Center for High Assurance Computer Systems

U.S. Naval Research Laboratory

25th Symposium on Network and Distributed System Security San Diego, CA February 21st, 2018

 Adversary's goal: use website fingerprinting to deanonymize client (link client to destination)

U.S. NAVAL RESEARCH LABORATORY Onion Service Fingerprinting

• Tor website fingerprinting on onion services

All prior work considers adversary in an entry position

Onion Service Fingerprinting

All prior work considers adversary in an entry position

Limitations of the entry

- Client-to-entry path is an unrealistic privileged position for most
- Entry guard relays must be stable and have high up-time
- Clients choose and pin 1 entry guard for 2-3 months before switching
- It takes entry guards 3 months to reach steady state and be fully utilized by the network

U.S.NAVA

Onion service fingerprinting from an internal, middle relay position

U.S.NAVAL

Onion service fingerprinting from an internal, middle relay position

Advantages of the middle

 Clients choose a new middle for every circuit (choice is weighted by bandwidth)

U.S.NAVAL

- No special relay requirements
- Fully utilized almost immediately
- Statistical sampling of all clients

Onion service fingerprinting from an internal, middle relay position

- Clients choose a new middle for every circuit (choice is weighted by bandwidth)
- No special relay requirements
- Fully utilized almost immediately
- Statistical sampling of all clients

U.S.NAVAL

• The middle identifies the destination... and then what?

U.S.NAVAL

Background, Motivation: Why the middle relay?

- Circuit fingerprinting
- Onion Service Fingerprinting
- Onion Service Popularity Measurement
- Conclusion / Questions

Circuit Fingerprinting

- Collect circuit traces, extract features, train classifiers
- Identify circuit purpose and position

Circuit Fingerprinting

Predict circuit type and relay position

U.S.NAVAL

U.S. NAVAL RESEARCH LABORATORY

Data Set, Features, and Training

Generate samples using Shadow

- Use the Shadow Tor simulator to generate 1.85 million circuits
- Label circuits with purpose and position
- Extract features and train randomforest classifiers
- Use as features:
 - Previous/next node type
 - Counts of cell type/relay command (recv/sent inside/outside)

TABLE I.10-FOLD CROSS-VALIDATED CIRCUIT CLASSIFICATION
RESULTS

	Purpose (rendezvous vs other	r) Position (C-M1 vs other)
Accuracy	$92.41 \pm 0.07\%$	$98.48 \pm 0.01\%$
Precision	$91.87 \pm 0.11\%$	$97.16 \pm 0.03\%$
Recall	$93.05 \pm 0.09\%$	$99.88 \pm 0.01\%$
F-1	$92.46 \pm 0.07\%$	$98.50 \pm 0.01\%$
True Positi	ves 396,615 (91.77%)	821,478 (97.08%)
False Posit	ives 35,576 (8.23%)	24,689 (2.92%)
False Nega	tives 30,056 (6.95%)	984 (0.12%)
True Negat	tives 402,135 (96.05%)	845,183 (99.88%)

Onion Service Fingerprinting

- Collect webpage traces, train and evaluate classifiers
- Identify onion service

U.S. NAVAL RESEARCH LABORATORY

Onion Service Fingerprinting

• Given a rendezvous circuit, can we identify the destination?

Closed World Onion Site Fingerprinting Results

True Positive Rates	Num sites	k-NN (%)	k-FP (%)	CUMUL (%)
	10	$95\%\pm0.03$	$95\%\pm0.06$	$92\%\pm0.04$
 Classify using client-to- 	50	$75\%\pm0.02$	$85\%\pm0.03$	$81\%\pm0.02$
guard packet traces	100	$67\%\pm0.01$	$68\%\pm0.03$	$64\%\pm0.02$
	Num sites	k-NN (%)	k-FP (%)	CUMUL (%)
	10	$91\%\pm0.03$	$100\%\pm0.00$	$99\%\pm0.03$
Middle relay model	50	$73\%\pm0.01$	$91\%\pm0.01$	$86\%\pm0.03$
Classify using middle	100	$68\%\pm0.01$	$76\%\pm0.02$	$76\%\pm0.02$
relay cell traces	500	$64\%\pm0.00$	$72\%\pm0.01$	$66\%\pm0.01$
	1,000	$59\%\pm0.00$	$56\% \pm 0.01^{*}$	$63\%\pm0.01$

U.S.NAVAL

U.S. NAVAI RESEA

Open World Onion Site Fingerprinting Results

60

- **One-class classification problem**
 - Site is the monitored site or other
 - We used a popular social networking site () as the monitored site
 - Projection shows boundary that minimizes false positives
 - 80% of all errors were from 12 sites

Open World Onion Site Fingerprinting Results

U.S.NAVAL

Onion Service Popularity Measurement

- Train classifiers on a social networking site front-page
- Apply trained classifiers to measure onion service popularity using privacy-preserving Tor measurement tool (PrivCount)

Classifying Circuits and Sites in Tor

- Measured popular social network site that runs a single onion service
- Enhanced PrivCount to classify circuit purpose, relay position, and site
- Three measurements:

U.S. NAVA

- Classify circuits from real Tor users
- Classify circuits from ground truth crawler
- Measure direct accesses to the ASN of
 (in the cases that we are the 3rd hop)

facebookcorewwwi.onion

Classifying Circuits and Sites in Tor

Measured popular social network site that runs a single onion service

PrivCount provides differential privacy

and secure aggregation of results

No information is stored on disk

- Enhanced P circuit purpo and site
 Ethical research:
 PrivCount prov and secure age
- Three measurements
 - Classify cire

- Classify cir
- Measure di
 (in the c
- Circuit-specific information is stored only for the life of the circuit (10 minutes)
- Consulted with Tor Research Safety Board to get feedback on methodology

Classification Results

Crawler results (ground truth)

Classifier	True Positives	False Negatives
Purpose	100%	0%
Position	96.5%	3.4%
Site f	60.0%	40.0%

Measurement pipeline results

Popularity	Direct	Classified	
Purpose (onion service)	1.28%	4.48%	
Site f	0.52%	0.02%	
	Results	Results include noise	

- Circuit and website fingerprinting is at least as accurate from middle relays as it is from the entry position
- The number of Facebook onion site visits was indistinguishable from noise
- More work needed to better understand middle relay threats
- All code is open-source:
 - github.com/onionpop
 - github.com/privcount
 - github.com/shadow

Contact:

Rob Jansen U.S. Naval Research Laboratory rob.g.jansen@nrl.navy.mil robgjansen.com, @robgjansen

Onion Service Fingerprinting Classifiers

- Train and test well known classifiers using packet and cell traces
- k Nearest Neighbors (kNN) [Wang et al., 2014]
 - Averages over k closest instances according to Euclidean distance
- CUMUL [Panchenko et al., 2016]
 - Support vector machine (SVM) with radial basis function
- k-Fingerprinting (KFP) [Hayes and Danezis, 2016]
 - Random forest + kNN (with Hamming distance)