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SEE%%’%Q Anonymous Communication with Tor
Tor Browse Privately.

« Separates identification from routing

« Provides unlinkable communication EXp IO e FI’GQ ly

* Promotes user safety and privacy online

Defend yourself against tracking and surveillance. Circumvent censorship.
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SEE%%’%Q Website Fingerprinting (WF) Threat Model

foo.com | WEF Attacks:

» Observe client-side traffic patterns
 Predict website visited by user,
breaking Tor’s anonymity

DPPIID
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S RORATORY How Might an Adversary Train its ML Models?

labeled ML model
training

DPPIID

......

foo.com
Traffic is onion-encrypted,

so labels are unavailable
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S RORATORY How Might an Adversary Train its ML Models?

Traditional method?

» Use automated browser (selenium)  labeled vaining ML model

* Crawl sites, collect traces+labels

M foo.com
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S RORATORY How Might an Adversary Train its ML Models?

» Use automated browser (selenium)  labeled ML model LouoaggaaVaCrri]ae%ebSig%g]CCUrate'Y model

training
- » Browser version, config
URL choice, fetch order, parallel tabs
Geo-location, concept drift

Static, small, closed world
Relay churn, version, congestion, etc.

* Crawl sites, collect traces+labels

foo.com
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S RORATORY How Might an Adversary Train its ML Models?

Emerging exit method?

« Traffic from regular users labeled ML model

. data training
» Collect traces+labels from exit relay ' 1

foo.com
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S RORATORY How Might an Adversary Train its ML Models?

e Traffic from regu|ar users labeled ML model ° Training data is collected on eXit, but

, data training )
» Collect traces+labels from exit relay . 1 @ testing must be done on entry

* Trace “distortion” reduces performance
by 5-18% [Cherubin’22]

foo.com
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Research Direction

Research Question:

« How can we mitigate trace distortion so that we can utilize real-world traces
to better estimate the threat of WF against Tor?

Training Mitigate distortion

between traces from
entry and exit
positions

Testing
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2. Retracer evaluation
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/3. Real-world WF evaluation
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Cell Trace Transduction

Cell Trace Transduction

 Cell trace: Example cell trace:
e asequence of n (timestamp, direction) pairs

- timestamp: when cell was observed, relative to start of connection | (0.1, +1),
— direction: +1 if forwarded toward server, -1 if toward client (0.5, -1),
(0.9, +1),
(1.3, -1),
(1.3, -1),
(1.3, -1),

]
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Cell Trace Transduction

Cell Trace Transduction

 Cell trace: Example cell trace:

e asequence of n (timestamp, direction) pairs
- timestamp: when cell was observed, relative to start of connection

[

— direction: +1 if forwarded toward server, -1 if toward client 28; T11)),’
131,
» Transducer: s
. afunction T(I, M, p,,, po,) =[Ol o
« transforms an input cell trace / in position p;, ]
into M output cell traces O in position p,; foo.com
* we want p,=exit, p, ~entry [_lll 1111
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Retracer: A Cell Trace Transducer

« Key Insights
A cell trace has the metadata needed
to reproduce it

« Network simulation tools (Shadow)
model Tor with high fidelity

 We can replay an exit trace in
Shadow and extract its entry trace
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« Key Insights * Retracer
« Acell trace has the metadata needed  Replays cells traces in large-scale
to reproduce it Tor simulations with Shadow
« Network simulation tools (Shadow) « Uses cell trace timing and directions
model Tor with high fidelity as a transcript for replay
 We can replay an exit trace in « Adjusts for latency between client
Shadow and extract its entry trace and exit during replay

@ Shadow simulation
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Outline

{1. Trace transduction with Retracer 1

{3. Real-world WF evaluation 1
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Retracer Evaluation Plan

Goal: evaluate how well Retracer transduces exit to entry traces

Real Tor labeled traces

Evaluate
@ Shadow simulation | similarity
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Collecting datasets for Retracer evaluation

Tor Dataset Collection Client ~ Patched Rel
« Patch Tor relay to record cell traces :

(only those from our client)

« Select some Wikipedia pages

* Fetch each page multiple times
through our Tor relay, record traces

« Repeat through Tor exit and entry
positions

Tﬁexn)
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Retracer Evaluation Methodology

We measure Retracer’s efficacy using a downstream WF classification task

Tor(entry,) Train
@@— —-

Tor(exit)
e

NetAug(M)
—
‘augment> 5 _@@

Retracer(M)

transduce> ‘ _Q% — —S L

Retracer
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Retracer Evaluation Results

Table 2: Classifier Accuracy in a Multiclass Closed World
Classification Experiment when Tested on Tor(entry,)

Method Training set DF Tik-Tok
Ideal Tor (entry;) 89% 87%
Retracer Retracer(19) 86% (1 3 pp) 85% (12 pp)
NetAug NetAug(19) 70% (119 pp) i
None Tor (exit) 76% (113 pp) 79% (18 pp)
Classifier Properties — Time-Oblivious Time-Aware

1: Timing information required by classifier but unavailable in data.
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Retracer Evaluation Results

¥ g5 A
>
Table 2: Classifier Accuracy in a Multiclass Closed World S 80 r\/—/\/\’—
Classification Experiment when Tested on Tor(entry,) § 75
<
g 70 -
Method Training set DF Tik-Tok E
v 65
Ideal TOI'(CHtI'Yl) 89% 87% 'L_‘cj _Retracer(M = x)
60 ~ NetAug(M =
Retracer Retracer(19) 86% (1 3 pp) 85% (12 pp) E etrug (M = x)
NetAug NetAug(19) 70% (119 pp) L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
None Tor (exit) 76% (113 pp) 79% (18 pp) Transducer Data Expansion Factor (M)
Classifier Properties — Time-Oblivious Time-Aware
L: Timing information required by classifier but unavailable in data. Figure 4: DF classifier accuracy in a multiclass closed-world

experiment when training on datasets transduced with an
increasing data expansion factor M and tested on Tor(entryz).
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( 1. Trace transduction with Retracer

- J

2. Retracer evaluation
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Real-World Evaluation Goals

We consider an adversary that uses
real-world traces

« Real: traces from normal Tor users
« Testing must be against real traces
* Training on real traces is thus superior

We want to estimate WF performance
as realistically as possible
« Considering multiple training strategies
 We need a source of real-world data!
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Methodology Considering Genuine Tor Traces
. GTT23 is available online:
GTT23: _ Paper: https://doi.org/10.48550/arXiv.2404.07892
« Contains >13M traces from real users Dataset: https:/doi.org/10.5281/zenodo. 10620519

« (Collected over 13 weeks on Tor exits

= 819,870
S 106 4 N High-volume Days
S ' Low-volume Days
>~
i~ 393,043
§ | 295358
&3 92,332
et 52,315
S 105 - 41,876 11935
o
@)
o 41,362
o 1’35638,018 ’
g g L
3 0 AT A Il |
1 I I I I I I I I
0 7 14 21 28 35 42 49 56 63 70 77 84 91

Relative Day of Measurement

Figure 1: The daily total (bars) and weekly mean (text)
number of circuits during our 13 week measurement.
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Methodology Considering Genuine Tor Traces

GTT23:

« (Contains >13M traces from real users
« (Collected over 13 weeks on Tor exits

Training:
« Use Deep Fingerprinting (DF) model
Week 1 traces with 2 1000 cells

* 1 model for each of the ~400 most
popular websites

Testing

 Traces from weeks >1
. * Open world: some sites not trained on

U.S. Naval Research Laboratory

GTT23 is available online:
Paper: https://doi.org/10.48550/arXiv.2404.07892
Dataset: https://doi.org/10.5281/zenodo.10620519
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Figure 1: The daily total (bars) and weekly mean (text)
number of circuits during our 13 week measurement.
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WF Performance when Testing on Entry Traces

OnlineWF Train: (Cherubin’22)

---------------

train

Jaa et
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WF Performance when Testing on Entry Traces

OnlineWF Train: (Cherubin’22)

---------------

train

Jaa et

Retracer Train:

.% .Eretracer .
‘ : @ w train E
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WF Performance when Testing on Entry Traces

OnlineWF Train: (Cherubin’22)

train

Ew@

Retracer Train:

. ............... retracer -
% i e

Both Test:

. retracer
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LABORATORY

WF Performance when Testing on Entry Traces

OnlineWF Train: (Cherubin’22)

0.1 = 0.34 for the median website
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Figure 8: Classifier performance when training on exit traces
as in OnlineWF [8] and training on entry traces transduced
from the exit traces by Retracer.
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Synthetic Datasets Overestimate WF Performance

Retracer: trained & tested as before

« Uses Retracer to transduce the
GTT23 train and test sets

Synthetic datasets - previous work

« BigEnough: ~100,000 traces

 GoodEnough: ~10,000 traces

« Multiple pages per site

« Use analogous per-site
training/testing methodology
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Synthetic Datasets Overestimate WF Performance
Retracer: trained & tested as before WF performs better with synthetic traces
« Uses Retracer to transduce the
GTT23 train and test sets 10
0 - 1| = Bighnoves
0.7 4 1 ++* GoodEnough
Synthetic datasets = previous work 06 :
- BigEnough: ~100,000 traces O 54 ] I j
«  GoodEnough: ~10,000 traces 21 :
. Multiple pages per site 0 ' ,

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75  1.00
Precision Recall

« Use analogous per-site
training/testing methodology

Figure 9: Performance of the classifiers trained and tested
with each dataset. “Synthetic” traces lead to better perfor-
mance than Retracer traces (transduced from GTT23).
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What are the important features for performance?

Feature importance analysis —

o 20x traces Y% variance
features predlctlng performance 0.45 increase 0.33 increase
1. Trace count Lo- — | |
* Median F, increased by 0.45 when o8- T
20x as many traces were available o 06 - .
Sl L4 :
2. Variance of trace lengths o3 ] T - 7
+ Median F, increased by 0.33 when 1y frasmem e s
half as much variance is observed 0.00 025 050 075 1.00 0.00 0.25 0.50 0.75  1.00

F1 Fl
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CABORATORY Repositioning Real-World Website Fingerprinting on Tor

Read the paper!
Contributions

« Retracer for transducing cell traces across positions
« Retracer evaluation using Tor datasets

« Real-world WF evaluation that tests on entry traces
* Individual website fingerprintability methodology

» Feature importance analysis

Future Work

« Use Retracer to evaluate WF in new scenarios
— Traffic splitting with Conflux
- Apply WF defenses on top of genuine data

Contact:
robert.g.jansen?.civ@us.navy.mil
robgjansen.com
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