
Censorship Evasion with Unidentified Protocol Generation

Ryan Wails†‡ Rob Jansen† Aaron Johnson† Micah Sherr‡

†U.S. Naval Research Laboratory
‡Georgetown University

Abstract
We present the design and implementation of a novel approach
to internet censorship evasion called Unidentified Protocol
Generation (UPGen). UPGen automatically generates novel
protocols for encrypted communication that are not easily
recognizable as being UPGen protocols, but instead as some
benign encrypted protocol unknown to the adversary. UPGen
protocols are to be used to relay traffic to censored desti-
nations via proxies, where each proxy can run a different
UPGen-generated protocol. An adversary attempting to block
at the protocol level but unable to identify UPGen protocols
could cause significant collateral damage if it attempted to
block all unidentified protocols. We conduct a security evalu-
ation of UPGen employing state-of-the-art machine learning
classifiers and find that it is infeasible to block UPGen proto-
cols without also blocking existing encrypted protocols. We
conduct small- and large-scale performance evaluations and
find that UPGen protocols meet or exceed the performance of
other common censorship evasion protocols.

1 Introduction

Privacy and freedom of expression depend on the ability to
freely access and contribute to information on the internet [54,
67]. Unfortunately, these human rights are increasingly re-
stricted as internet censorship by nation states grows [27]. We
present a new strategy to evade censorship that is harder to
effectively block than many popular evasion strategies while
providing similarly high performance and maintainability.

We consider a nation-state censor whose primary objective
is to block access to a prohibited set of online services while
allowing access to all other services. Such an adversary is
said to employ a blocklist, in contrast to the use of an al-
lowlist which would instead contain all the allowed services.
Censors typically prefer using a blocklist over an allowlist
because doing so yields much less collateral damage from the
inadvertent blocking of benign traffic.

To enforce such blocking, the adversary also tries to dis-
rupt network flows associated with censorship evasion [42,

75]. The censor has two primary challenges to achieving its
goal: (1) it manages a very large volume of traffic crossing
its network, and (2) there is a relatively low prevalence of
circumventing flows in the traffic it routes [42]. These chal-
lenges lead the censor to prefer classifiers that can distinguish
circumventing flows from benign flows efficiently and accu-
rately (i.e., with a high rate of true positives and a low rate
of false positives) [81]. Hence, real-world censors deploy
simple classifiers that are highly targeted to the specific fea-
tures of a protocol (e.g., a particular sequence of bytes present
within the first few packets). Such classifiers can be applied
efficiently at scale while limiting the collateral damage of
blocking benign flows [56, 75].

Considering real-world censors, we explore the following
research question: can we effectively create and use multiple
network protocols to increase the accidental censorship of
benign flows (i.e., false positives) while limiting censorship of
circumventing flows (i.e., true positives)? There has been lim-
ited success in addressing this question to thwart real-world
censors. Fully encrypted protocols (FEPs), which hide all
protocol metadata by fully encrypting the traffic stream [21],
represent the most successful strategy with the widest deploy-
ment [15, 45, 78, 85, 88, 89]. However, the randomized nature
of FEPs has recently been exploited by a real-world censor to
detect and block fully encrypted traffic [2, 86], leaving few
viable alternatives that may be able to withstand emerging
machine-learning-based attacks [47, 81, 87].

In this paper, we explore a novel strategy for creating new
censorship evasion protocols based on three key insights.
First, while encryption can be used to hide protocol meta-
data [21], typical encrypted protocols exhibit protocol struc-
ture and unencrypted fields (e.g., a greeting string, version
number, or message type). Second, encrypted protocols are
ubiquitous and include not only well-known protocols such
as TLS [16, 64] and SSH [90], but also a variety of recent or
less-known protocols such as those designed for cryptocur-
rencies [12, 72], Internet-of-Things devices [69], file stor-
age [52], video games [28], and keystroke prediction [43].
Third, censors deploying protocol-specific classifiers can typi-

1

cally disrupt evasion tools that cannot adapt or use unblocked
fallback protocols [75]. These insights suggest that an evasion
strategy that uses many plausible but unlinkable encrypted
protocols may considerably increase the cost of censorship by
requiring a blocklisting censor to develop a specific classifier
for each protocol or risk significant collateral damage.

Building on these insights, we present the design of a new
censorship evasion strategy called Unidentified Protocol Gen-
eration (UPGen). The core of UPGen is a novel protocol
generator that can produce 4.2×1022 distinct structured en-
crypted protocols for censorship evasion. We designed the
generator to produce protocols with features that we found
common in a study of 27 existing protocols used for encrypted
internet communication. The generator considers both mes-
sage structure (the selection and placement of fields in each
protocol message) and message contents (the values written
into message fields) while using probabilistic sampling to
choose plausible yet distinct structure and content semantics.

We implement and evaluate UPGen considering common
deployment scenarios (e.g., virtual private networks and Tor)
wherein a client establishes a censorship-resistant communi-
cation channel to a proxy server and tunnels internet-bound
traffic through the proxy. Both the client and proxy run a
Programmable Protocol System (PPS) [13, 19, 79] that can
be configured with one or more of the protocol specifications
generated by UPGen.

The security argument for UPGen is that (1) because the
generated protocols are new and unique, they will initially
be unidentified by the censor and thus will initially be un-
classified on a blocklist; (2) because the space of possible
generated protocols is large, it will be infeasible to apply a
classifier for each; and (3) because the generated protocols are
structured similarly to existing encrypted protocols and lack
distinguishing features, efficient classifiers cannot block the
generated protocols as a class without causing significant col-
lateral damage. Additionally, by assigning each proxy server
a different protocol, we ensure that discovering and blocking
a single protocol only affects connections to one proxy server
and does not make an entire proxy network inaccessible.

We evaluate the security of UPGen protocols against a
machine-learning censor considering a variety of classifica-
tion techniques. Against state-of-the-art classifiers [34, 81],
we find that the censor always incurs a high rate of collateral
damage (inadvertent blocking) when trying to block all UP-
Gen protocols. For every classifier and experiment we ran,
a significant fraction—typically 100%—of benign protocol
flows were blocked. Our results suggest that UPGen proto-
cols are difficult to distinguish from benign protocols that a
nation-state censor may encounter in the wild.

We evaluate the performance of UPGen protocols executed
using Proteus as the PPS [79]. In a set of laboratory bench-
mark experiments, we find that UPGen protocols meet or
exceed the latency, throughput, and scalability of other com-
mon censorship evasion protocols including Obfs4 [89] and

TLS [16, 64]. In a set of large-scale distributed-system exper-
iments with Tor, we find that the performance of Tor traffic
flows is not significantly affected by the choice of the censor-
ship evasion protocol executed by the client and proxy.

The UPGen design is also highly maintainable. The UPGen
protocols do not mimic any existing protocol or application,
and so they do not need to be kept in sync with an external
system. Additionally, each proxy can use a separate generated
protocol, and so the identification of one UPGen protocol by
the censor does not require changes at other proxies or their
clients. The UPGen generator may also be updated to adapt
to new censorship techniques over time without invalidating
already-deployed protocols.

We summarize our primary contributions as follows:
• the design of the UPGen system and protocol generator

that can generate plausible unidentified protocols useful for
censorship evasion

• a security analysis of UPGen in which we find that it is
infeasible to censor UPGen protocols without incurring
collateral damage of other encrypted protocols

• a rigorous performance evaluation of UPGen indicating
that it meets or exceeds the performance of other common
censorship evasion protocols

• an implementation of UPGen and extensions to Proteus to
enable support for all UPGen-generated protocols

2 UPGen Design

UPGen is designed against a censor that can target specific
protocols or applications for blocking but seeks to avoid col-
lateral damage from blocking activity that it is not aware of
or does not understand. UPGen exploits this situation by
generating novel protocols for encrypted communication that
appear to be plausible designs and have features that are likely
to be shared by other (unknown) encrypted protocols.

UPGen protocols operate between the transport and appli-
cation layers, similar to TLS [16, 64], and they run over TCP.
UPGen requires the use of a proxy node that has not been
identified and blocked at the IP level by the censor. For any
such proxy node, UPGen will independently generate a pro-
tocol to be used with that proxy. Therefore, a malicious user
who discovers the identity of a proxy using UPGen cannot
develop protocol fingerprints that could be used to identify
other proxies using UPGen.

2.1 Security Goals

The key security goal for UPGen is as follows: a censor that
is aware of UPGen and some real-world encrypted protocols
should be unable to develop detection or blocking techniques
for most UPGen protocols that do not also block many of the
other (i.e., unknown) real-world encrypted protocols. There
are several ways in which the censor may be aware of UPGen,

2

Client

Internet Service

>...

Programmable
Protocol
Engine

Censored
Network

Protocol
Spec
Files
(PSFs)

distribute
out of band

Generator

Proxy Provisioner &
Distributor

provision
Proxies

>...

Figure 1: Schematic diagram of the UPGen censorship resis-
tance system.

for example, by observing traces of UPGen protocols on the
network or by interacting with the UPGen generator to obtain
samples. Note that UPGen need not mimic exactly any of
the real-world encrypted protocols unknown to the adversary,
which would difficult to do even if the adversary’s knowledge
were fixed and known. Instead, UPGen protocols will exhibit
a variety of different structural characteristics, such as the
format of cleartext metadata, that are typical for encrypted
protocol designs as a whole.

More precisely, we posit the existence of a set of benign
encrypted protocols P that exist in the real world at any given
time, and we suppose that the adversary knows about a subset
Q⊂ P. UPGen’s goal is to generate protocols randomly from
some space U that is similar enough to P that the adversary
cannot efficiently distinguish between U and P\Q given only
its knowledge of Q. For an adversary that can sample from U ,
this goal requires that U is too large to enable each member
protocol to be individually fingerprinted. It also requires that
U be similar enough to P overall that, regardless of the known
subset Q, a method to distinguish U from Q is not sufficient
to distinguish U from P\Q.

UPGen is designed to provide this security with respect
to a passive censor who observes but does not interfere with
traffic. Active censors are more complicated and expensive
to implement, and real-world censors appear to generally be
passive with the exception of active scanning of hosts (which
UPGen does provide some protection against).

In addition to this primary security goal, UPGen is designed
with other security and performance goals. First, UPGen
protocols provide standard confidentiality and integrity of the
communications. Second, UPGen protocols are designed to
provide high throughput and low latency, similar to encrypted
protocols such as TLS [16, 64] and SSH [90]. Third, UPGen

is designed to provide efficient and fast protocol updates so
that proxies and clients can quickly be provided with new
protocols as censor blocking methods evolve.

2.2 System Architecture
The UPGen architecture is shown in Figure 1. UPGen makes
use of a Programmable Protocol System (PPS), which allows
protocols to be specified and run. The PPS must define a
syntax and semantics for Protocol Specification Files (PSFs)
that can describe the protocols generated by UPGen, which
are all two-party protocols for bidirectional communication.
The PPS must also provide a Protocol Engine, run by each
party in a communicating pair, that takes a PSF and imple-
ments the protocol. The PPS must provide an interface to
allow a connection to be created using a given PSF, data to
be sent and received over that connection, and the connection
closed. The interface must allow the destination endpoint of
the proxied connection to be specified, and it may support
multiplexing multiple proxied connections over a single PPS
connection. Any PPS that is sufficiently expressive to imple-
ment the protocols generated by UPGen could be used, with
potential impacts on the efficiency of the runtime and the size
of the PSFs. Our implementation of UPGen uses Proteus [79]
as its PPS, although another design such as Marionette [19]
or WATER [13] could also be used. The system only supports
proxying TCP connections.

UPGen is composed of the following entities, each of which
performs a different role:
Generator: The Generator produces protocols defined in

Protocol Specification Files.
Clients: Clients forward traffic to proxies using PSFs. They

are located in censored networks.
Proxies: Proxies relay client traffic to the otherwise censored

destinations using protocols defined in the PSFs. They are
located outside of censored networks.

Proxy Provisioner: The Proxy Provisioner provisions each
proxy with a PSF produced by the Generator and a long-
term symmetric key generated by the Proxy Provisioner.

Proxy Distributor: The Proxy Distributor distributes proxy
information to clients, including their network addresses
and ports, PSFs, and cryptographic keys.

2.3 Threat Model and Deployment Scenarios
In the threat model for UPGen, the censor is able to passively
observe all network communications of the UPGen clients.
We assume there exist some encrypted protocols that are un-
known to the adversary, either because it has not observed
them or because it cannot identify them. The goal of the cen-
sor is to distinguish client connections to UPGen proxies from
client connections using unknown encrypted protocols to be-
nign servers. The censor may control some clients and some
proxies. However, the Generator, Proxy Provisioner, and

3

Proxy Distributor are all trusted and are assumed to success-
fully perform their functions (e.g., proxy distribution cannot
be blocked). Moreover, the Proxy Provisioner and Distribu-
tor are assumed not to distribute malicious proxies to honest
clients or honest proxies to malicious clients. In deployment
scenarios where that assumption does not hold, the security
guarantees of the system would still apply to honest proxies
distributed only to honest clients.

The system design and threat model are compatible with
several deployment scenarios:
Tor: The Tor Project runs the Generator and acts as both

the Proxy Provisioner and Proxy Distributor. The proxies
are run by third parties (e.g., using Tor’s rdsys [48] for
coordination and distribution).

VPN: The VPN provider runs the Generator, acts as Proxy
Provisioner and Proxy Distributor, and runs the proxies.
Proxies IPs are communicated through the same channels
that distribute the client VPN software.

Personal: An individual runs a proxy and acts in all roles.

2.4 Generator
The Generator is the core of the UPGen design. It implic-
itly defines a probability distribution over protocols, and dur-
ing a given execution it randomly samples a protocol from
this distribution. Samples are intended to be drawn indepen-
dently and thus require no coordination across proxies or even
across different instances of the Generator used in different
deployments. The input for the Generator is therefore simply
randomness, and it outputs a single PSF.

The generated PSF describes a protocol to be used by a
proxy and its clients to communicate. PSFs need to be ad-
ditionally configured by both parties with a shared private
key and by the client with the IP and TCP port of the proxy.
This configuration and PSF is obtained by the proxy from the
Proxy Provisioner and by the client from the Proxy Distribu-
tor. The generated PSFs are designed to enable bidirectional
communication between the client and proxy. While the pro-
tocols are bidirectional, the client initiates the connection by
sending the TCP SYN.

To design the Generator, we identified 27 real-world en-
crypted protocols (see Table 8 in Appendix A), of which 21
have open designs that we were able to study. We observed
many common patterns across these protocols, which we used
in the Generator design, and we enlarged the space of such
patterns using reasoning about what other design decisions
are justifiable. After an initial design, we iteratively produced
refinements as we ran our lab experiments with the TLS 1.2,
TLS 1.3, SSH 2.0, CurveZMQ, and secio protocols (see §4.3).

Communication with an UPGen protocol occurs via proto-
col messages, each of which has a type. A protocol message
of a given type has a certain format, which determines where
and how protocol metadata appears in a message, if and how
encryption is applied, and how any application data is en-

coded by the sender and then decoded by the receiver. Some
message types contain a payload with such application data,
which is forwarded to the receiving application. There are
three message types: greeting, handshake, and data.

All UPGen protocols follow the design pattern in which an
optional greeting phase initiates the connection, a handshake
phase follows any greeting (initiating the connection when
no greeting is used), and a data phase succeeds the hand-
shake. Each type of protocol message can only be sent during
its phase. During the greeting phase, the parties exchange
ASCII-printable greeting strings of fixed lengths. During the
handshake phase, the parties perform (or at least appear to per-
form) connection setup functions, e.g., key exchanges. During
the data phase, application data is sent between the client and
server (some protocols send data during the handshake).

Algorithm 1 UPGen Generator Parameter Sampling
1: function SAMPLEPARAMETERS()
2: s← SECPARAM() ▷ Security parameter
3: c← CIPHER(s) ▷ Encryption cipher
4: t← TYPEFIELD() ▷ Type field (plain/enc.)
5: ℓ← LENGTHFIELD() ▷ Length field (plain)
6: v← VERSIONFIELD() ▷ Version field (plain/enc.)
7: n← NONCEFIELD(s) ▷ Nonce field (plain)
8: p← PADLENGTHFIELD(c, ℓ) ▷ Padding-length field (enc.)
9: e← EXTRAFIELD(t,v) ▷ Extra field (enc.)

10: r← RESERVEDFIELD() ▷ Reserved field (enc.)
11: z← CERTIFICATE() ▷ Certificate field (enc.)
12: k← KEYENCODING() ▷ Key-exchange encoding
13: g← GREETINGSTRING() ▷ Greeting string (plain)
14: h← HANDSHAKE() ▷ Handshake pattern
15: b← SUBPROTOCOL(h) ▷ Subprotocol pattern
16: f ← FIELDORDER() ▷ Order of fields
17: a← LENGTHALONE(f) ▷ Write length field alone
18: return (s,c, t, ℓ,v,n, p,e,r,z,k,g,h,b, f ,a)

A high-level description of the core of Generator appears
in Algorithm 1. It randomly samples a set of parameters
that determine an UPGen protocol. Those parameters are
subsequently translated deterministically into the associated
PSF, using a process that depends on the PPS (we generate a
PSF using the Proteus protocol grammar [79]).

Each choice of parameter is made randomly from a finite
list of options, typically with a uniform distribution though
in some cases weighted towards choices that appeared more
commonly among the encrypted protocols we surveyed. All
choices are made independently unless a specific dependency
appears as an input to the function call responsible for a
given choice. For field choices, the “plain” annotation in
Algorithm 1 indicates that they appear unencrypted, “enc.”
indicates that they are encrypted, and “plain/enc.” indicates
that both are possibilities. Unencrypted fields are chosen from
a specified list of potential values and byte lengths, while the
only choice for encrypted fields is their byte length.

4

The parameters incorporate the key observable features we
identified in our study of existing encrypted protocols:

SECPARAM(): The security parameter indicates the crypto-
graphic level of security, which is reflected in the encryp-
tion cipher. Its value is chosen as either 128 or 256.

CIPHER(s): For s indicating 128-bit security, the encryption
cipher is selected as AES-128-GCM. For 256-bit security,
the cipher is AES-256-GCM or ChaCha20-Poly1305.

TYPEFIELD(): In a given connection, the type field will
contain one of a finite set of sequential values indicating
the type of message. This parameter selects the set of values
used in the protocol. The field may be encrypted or not.
If not encrypted, the size of the set is chosen from three
possible values and the starting number is chosen from four
possible values. The type field appears in handshake and
data phases, and it is incremented when new phases begin.

LENGTHFIELD(): The length field conveys the length of
payload data, although it may also cover the MAC tag of
such data. It may be encrypted or not. Its length in bytes is
chosen from two possible values. It appears only when a
payload field exists (though such field may be empty).

VERSIONFIELD(): The version field contains a value indi-
cating the (supposed) version of the protocol used. It may
be encrypted or not. Its length in bytes is one of two values.
It may or may not be included, and, if it is, it appears only
in the first two handshake messages. Its value is chosen
from among four possible numbers, and it may also include
a minor-version value chosen from three possible numbers.

NONCEFIELD(s): The nonce field contains randomness of
length s, typically used as an encryption nonce. It is unen-
crypted and may or may not be present. If it is, it appears
only in the first two handshake messages.

PADLENGTHFIELD(c, ℓ): The padding-length field con-
tains the length of any padding included in the payload.
It is encrypted. It is no longer than the size ℓ of the length
field, but it may be chosen to be the shorter of the two
possible length-field sizes. It appears only when a c is a
block cipher and the message has a payload field.

EXTRAFIELD(t,v): The extra field is always encrypted and
represents additional (unspecified) headers. It is present
only if either the type field t or version field v is encrypted.
Its length in bytes is chosen separately for the handshake
and data phases from three possible values.

RESERVEDFIELD(): The reserved field represents space re-
served for future use. It is always encrypted. Its length is
chosen from one of five possible values. It appears only in
the handshake phase.

CERTIFICATE(): The certificate field representing a server
certificate may be included in the first handshake message
from the server to the client. It is always encrypted. If it is
included, its length is selected from a range of 2048 values.

KEYENCODING(): Specifies how the keys exchanged dur-
ing the handshake are encoded (DER, PEM, or raw bytes).

GREETINGSTRING(): Greeting strings may be exchanged
at the beginning of a connection. If included, the greeting
string is generated by a recurrent neural network trained
on an archive of GitHub repository names. The client and
server both send the same string, and either one may initiate
the exchange.

HANDSHAKE(): The handshake pattern determines both the
message flow during the handshake phase and how keys are
exchanged. Ephemeral keys are always exchanged and are
used to provide forward secrecy. In some handshake pat-
terns, static keys may be sent, but these are for appearances
only and are not used for encryption or authentication.
The handshake pattern is chosen from among eight pos-
sible patterns. The message flows of these patterns fall
into the following categories: one client-to-server message
followed by a server-to-client message that can already con-
tain payload data (0-RTT), one client-to-server message
followed by a server-to-client message before the payloads
(1-RTT), and the 1-RTT messages followed by a client-to-
server message before the payloads (1.5-RTT).
Ephemeral keys are exchanged in the first two handshake
messages. Static keys can be sent by the client, server, or
both for ostensible authentication. They are generally sent
with the ephemeral key, except in the 1.5-RTT patterns
where the clients send them afterwards and encrypted.

SUBPROTOCOL(h): This parameter models subprotocol
control messages sent encrypted after the handshake but
before application data are transmitted. Subprotocol mes-
sages occur in the data phase. They cannot occur if the
handshake pattern h is RTT-0. The possible subprotocol
patterns have three possible numbers of client-server mes-
sage exchanges (0, 1, or 2), and the size of each message is
selected from 252 possible values.

FIELDORDER(): This parameter indicates the order of the
non-payload fields and also if the payload field is encrypted
separately. The sets of unencrypted and encrypted non-
payload fields are each permuted uniformly at random.

LENGTHALONE(f): This boolean parameter indicates if
the length field is written alone to the socket buffer, making
it likely to be sent in its own TCP packet. It can only have a
value of true if the length field is first in the field ordering.

While the preceding parameters determine the ostensible
encryption cipher, we implement the symmetric encryption
using ChaCha20-Poly1305. It is a stream cipher, and so the
AES block size is easily emulated. Ephemeral key exchanges
are performed using Curve25519. A shared secret is derived
from the ephemeral keys via Diffie-Hellman key agreement.
The result is used with the long-term shared symmetric key
and a Key Derivation Function (KDF) to produce the key used
for symmetric encryption.

For each message type, the overall message layout is that
unencrypted fields are followed by encrypted fields, with the
payload always last. Ephemeral and static keys sent during

5

the handshake are the last non-payload fields, and any static
key appears after any ephemeral key. A payload field appears
in each data-phase message, and in the RTT-0 handshake
pattern it also appears in the first server-to-client handshake
message. Padding is considered part of the payload field and
appears at the end of the payload data.

By independently sampling each of the parameters
described above, UPGen produces a large number of unique
encrypted protocols. For example, UPGen may generate a
1-RTT protocol wherein the handshake phase begins with a
client-to-server message formatted as follows:

type

1 byte

version

1 byte

nonce

12 bytes

ephemeral key

115 bytes

static key

115 bytes

A server-to-client message that also appends a static key is
sent in response to conclude the handshake phase:

type

1 byte

version

1 byte

nonce

12 bytes

ephemeral key

115 bytes

static key

115 bytes

Following the handshake, the client and server exchange
application payloads during the data phase by exchanging
messages of the following format:

type

1 byte

length

2 bytes

pad length

2 bytes

payload

length bytes

padding

pad length bytes

msg auth code

16 bytes

The padding-length, payload, and padding fields are all
encrypted. The full specification file for this example
protocol is available in Listing 1 in Appendix B.

3 Implementation

We implemented the UPGen-generation procedure described
in §2.4 in approximately 2,000 lines of Python 3 code. Our
implementation samples from a set of parameters to gener-
ate protocol specification files for the Proteus programmable
censorship-circumvention system [79]. The existing Proteus
prototype does not support all protocol features generated by
UPGen. Thus, we extended Proteus to add support for key
exchange, randomized encryption, forward secret protocols,
encrypted certificates, and padding schemes that support arbi-
trary block ciphers (e.g., AES128 and AES256). Our Proteus
extensions were implemented in approximately 1,000 lines
of Rust code.

The UPGen generator and our extended version of Proteus
were used throughout our evaluations in the remainder of the
paper. In particular, our extended version of Proteus conforms
to the pluggable transport standard, which enables us to evalu-
ate UPGen protocols in the context of real-world applications
such as Tor and ptadapter. We have also successfully tested
our implementation in a private Tor bridge deployment, with
Tor Browser, and in a censored region of the Internet (see §6).

4 Security

Here we describe UPGen’s security properties, the diversity
of the protocols it produces, and its resilience to classification
by state-of-the-art machine learning classifiers.

4.1 Confidentiality and Integrity

During the handshake phase, a genuine Diffie-Hellman
ephemeral key exchange is performed. The resulting key
is combined with the long-term symmetric key using a KDF
to provide a short-term symmetric key. Using this key, all pay-
load data (i.e., data to be forwarded by the proxy) is encrypted
in the message payload using authenticated encryption. Thus
UPGen protocols provide cryptographic confidentiality and
integrity with forward secrecy to the application data. We note
that if the censor obtains the secret key of the proxy (which
cannot happen under our threat model) then they could imper-
sonate the proxy via a man-in-the-middle attack and violate
these confidentiality and integrity guarantees.

The use of a long-term symmetric key might seem like it
increases the challenge of securely distributing key material.
However, the identity of the proxy itself (i.e., its IP address)
already constitutes a shared secret, as a censor with that infor-
mation could institute a block based on the IP address. There
still would be some value to the use of a long-term public
key by the proxy, in that by using a triple-Diffie-Hellman
handshake in the ephemeral key exchange, the proxy would
be authenticated to the client and would thereby prevent im-
personation by a censor unable or unwilling to simply block
the proxy. Such a key could be generated by the proxy, sent to
the Proxy Provisioner, and ultimately distributed to the client.

4.2 Analysis of UPGen Protocols

We quantify the diversity of the protocols produced by the
Generator by counting them and evaluating the Shannon en-
tropy of the distribution. Table 1 shows the total count and
entropy of the Generator distribution, as well as how each of
the protocol parameters contributes to these values. The greet-
ing string parameter is underestimated as simply the choice
of who sends it first if anybody, and in the implementation an
RNN is used to sample the greeting string value if it exists,
which only increases the size and entropy of the Generator
distribution. Also, the per-parameter entropy values are con-
ditional entropy when they depend on other parameters.

We observe that UPGen can generate a large number of
protocols (4.2×1022), more than could ever be sampled. A
large number of these come from the subprotocol patterns,
but even excluding subprotocol patterns, however, the Gener-
ator can still produce over 1013 different protocols. We can
also see that the entropy of the Generator distribution is high
(38.4 bits), which shows that, even when taking the probabili-

6

https://github.com/twisteroidambassador/ptadapter

Table 1: Quantitative analysis of UPGen Generator

Protocol parameter # options Entropy (bits)

Security parameter 2 1
Encryption cipher 3 0.5
Type field 25 2.7
Length field 2 0.81
Version field 36 4.1
Nonce field 3 1.0
Padding field 2 0.25
Extra field 9 2.4
Reserved field 5 1.1
Certificate 2048 6.5
Key encoding 3 1.6
Greeting string 3 1.1
Handshake pattern 8 3.0
Subprotocol pattern 4.0×109 8.3
Field order 12 3.6
Length alone 2 0.48

Total 4.2×1022 38.4

ties of each protocol into account, attempting to individually
fingerprint UPGen protocols is unlikely to be effective.

4.3 Experimental Security Analysis

In this section, we experimentally determine the distinguisha-
bility of UPGen-generated protocols from real-world en-
crypted protocols. Following our threat model, we assume
that the censor has knowledge of some strict subset of the
benign real-world encrypted protocols and has the resources
to analyze some but not all of the UPGen protocols.

The distinguishing experiments are structured as super-
vised machine learning tasks, which is in accordance with
state-of-the-art traffic-analysis research [34, 61, 62, 81,
82]. In these experiments, the censor assembles a train-
ing dataset consisting of benign-protocol traffic traces and
UPGen-protocol traffic traces. From this dataset, the censor
then trains a classification model that distinguishes UPGen-
protocol traces from benign-protocol traces using various
features of the captured packets. The censor’s classification
power is evaluated on a testing dataset that is disjoint from
the training dataset. To reflect our threat model, the test set in-
cludes some “out-of-distribution” (OOD) traces, that is, traces
from protocols that are not represented in the training set, in-
cluding both benign protocols and UPGen protocols. The
focal point of our analysis is the censor’s out-of-distribution
performance; to avoid collateral damage and to succeed in
blocking UPGen, the learned classifiers must accurately gen-
eralize to the out-of-distribution protocols.

4.3.1 Data collection

The prerequisite step of our experimental process is data col-
lection. In order to collect flows from each of the encrypted
transports, we wrote custom traffic generation software in ap-
proximately 9,000 lines of C++, Rust, and Python code. The
list of encrypted protocols supported by our software is shown
in Table 2. The generation software instantiates a client and
server process for a chosen encrypted protocol (for example,
an SSH client and server) and then transmits a fixed sequences
of bytes through the established connection. It is important
to use the same simulated application behavior in these ex-
periments so that classification of flows can be attributed to
differences due to the encryption protocols themselves and
not differences in application behavior. In these experiments,
we configured the client to initially send 1 kB to the server
and the server to respond with a 10 kB message; subsequently,
the client and the server enter into a cycle wherein the client
sends a 256 B message to the server, and the server responds
with a 10 kB message. This behavior is meant to roughly
correspond to web browsing activity where a client makes rel-
atively small requests to a server and receives large responses;
this behavior will cause the transmission of both small and
large messages during the encrypted protocol’s data phase.

For each protocol execution, we recorded the sequence of
packets transmitted between client and server in pcap for-
mat using Linux’s standard tcpdump utility. To isolate the
encrypted protocol traffic, we configured our custom traffic
generation software to run each protocol on a distinct port and
configured tcpdump to capture traffic on only that port. The
packet captures were recorded from the vantage point of the
client process on a Linux server running Debian 12. The ma-
chine’s network interfaces were limited with a 1,500 B MTU.
TCP and generic segmentation offloading were disabled so
that these optimizations would not affect the packet capture.
We disabled IPv6 on the machine so that all traffic was car-
ried over IPv4. The collected pcaps were filtered using Wire-
shark’s tshark utility to remove TCP packets carrying no
segment data (for example, SYN, ACK, and FIN packets).

In total, we collected 1,000 traces for each of the TLS 1.2,
TLS 1.3, SSH, CurveZMQ, Noise, secio, and Obfs4 protocols.
We also collected 5 executions for each of 1,000 randomly
generated UPGen PSFs (for in-distribution examples), and
2 executions for each of an additional 2,500 randomly gener-
ated PSFs (for out-of-distribution examples, where we ensure
that the 2,500 PSFs are disjoint from the other 1,000).

4.3.2 Machine learning

Dataset formation. The collected traffic traces are used to
train and test a number of supervised machine learning mod-
els, which are designed to distinguish UPGen-protocol traffic
from benign-protocol traffic. These models are trained and
tested using labeled traces, where a trace is labeled positive if
it is from an UPGen protocol and negative if it is from a be-

7

Table 2: Encrypted transports used in evaluation.

Transport Provider Language

TLS 1.2 OpenSSL C
TLS 1.3 OpenSSL C
SSH 2.0 libssh C
CurveZMQ libcurve, libzmq C, C++
Noise Protocol Family snow Rust
secio tet-libp2p Rust
Obfs4 lyrebird, ptadapter Go, Python
UPGen Protocol Family proteus, ptadapter Rust, Python

nign protocol. As noted above, testing datasets include traces
from both in-distribution and out-of-distribution protocols.

In each experiment, we simulate the existence of out-of-
distribution benign traffic by designating one benign protocol
as out-of-distribution and using its examples only in the test
set. For UPGen, we use the 2,500 protocols as the out-of-
distribution examples. For example, suppose without loss of
generality that SSH was designated as the out-of-distribution
benign protocol for an experiment. Then the data would be
partitioned as follows and according to the following amounts:

Negative training examples: 500 examples each of
TLS 1.2, TLS 1.3, CurveZMQ, and secio executions.

Positive training examples: 4 examples each of 1,000 ran-
domly sampled PSFs.

In-distribution negative testing examples: 500 new exam-
ples each of TLS 1.2, TLS 1.3, CurveZMQ, and secio
executions.

Out-of-distribution negative testing examples: 1,000
examples of SSH executions.

In-distribution: positive testing examples: One new exam-
ple of each of the 1,000 (training) PSFs.

Out-of-distribution positive testing examples: Two exam-
ples each of 2,500 randomly sampled PSFs disjoint from
the training set.

We experimented with five choices of out-of-distribution
benign protocol: CurveZMQ, Noise, secio, SSH, and TLS.

Feature selection. To be provided as input to a machine
learning model, each packet capture must be mapped to a
feature vector. We consider two feature vector representa-
tions that have been explored in prior work. The first is the
sequence of packet lengths in the flow, i.e., ⟨di · pi⟩30

i=1, where
di indicates the direction of the packet (di = 1 for a client-to-
server packet, and di = −1 otherwise) and pi is the length
of the carried TCP segment; the trace length of 30 packets
follows Wang et al. [82] while the packet representation fol-
lows Wails et al. [81]. The second is the sequence of TCP
segment bits in the flow, i.e., ⟨b j

i ⟩1≤i≤30,1≤ j≤280, where b j
i is

the jth bit of the ith packet; this representation is known as the
“nPrint” representation flow from Holland et al. [34]. Both rep-
resentations have been used for complex traffic analysis tasks

[34, 61, 66], including from work studying censorship [81].
Because UPGen protocols have unique packet length distri-
butions and unique message field values, it is important to
consider various representations that encode both the packet
length sequence and the sequence of actual bits transmitted.

Classifiers. We consider four classifiers in our experi-
ments. For the sequence-of-lengths feature representation,
we use Sirinam et al.’s “Deep Fingerprinting” (DF) deep con-
volutional neural network as a classifier. The DF classifier
has been demonstrated effective in many traffic analysis tasks
[70, 71]. Recently, Wails et al. showed that the DF model can
be used to detect Obfs4 flows in real-world networks. Also,
for the sequence-of-lengths representation, we use a simple
decision tree and random forest classifier, which are more
interpretable than DF. For the nPrint representation, we use
nPrintML [34], a state-of-the-art automated traffic analysis
model based on AutoGluon [20]. AutoGluon fits the training
data using a number of different classifiers (such as a k-nearest
neighbors classifier, a neural network, or gradient-boosted
trees) and automatically selects the most accurate classifier
(or ensemble of classifiers) to use during testing.

Performance measurements. Classifier performance is
evaluated according to four standard measurements:
In-distribution true-positive rate (TPR) The fraction of

UPGen flows that are correctly identified (blocked) by the
censor for UPGen protocols that the censor trained on.

In-distribution false-positive rate (FPR) The fraction of
benign flows that are incorrectly labeled (blocked) by the
censor for benign protocols within the training set.

Out-of-distribution TPR The fraction of UPGen flows that
are correctly identified (blocked) by the censor for UPGen
protocols that the censor did not train on.

Out-of-distribution FPR The fraction of benign flows that
are incorrectly labeled (blocked) by the censor for benign
protocols outside the training set.
If they are successfully learning, the trained classifiers

should have high in-distribution TPR and low in-distribution
FPR. For a classifier to be useful to the censor, it must also
have a high out-of-distribution TPR (or else new PSFs will
escape the censor) and low out-of-distribution FPR (otherwise
the collateral damage will be too high).

Validation. In the following results, we treat the trials
where the Noise protocols are out of distribution as a kind of
experimental validation. Recall from §2.4 that we refined UP-
Gen’s design using features of the CurveZMQ, SSH, TLS 1.2,
TLS 1.3, and secio protocols; to prevent overfitting, we did not
perform the same refinement using the Noise protocols—it
was only after we finalized UPGen’s design that we experi-
mented with Noise.

4.3.3 Results

The results of our experiments are summarized in Table 3. The
in-distribution testing performance is nearly perfect for all ex-

8

Table 3: Testing classification true positive rate (TPR) and
false positive rate (FPR) of machine learning classifiers and
out-of-distribution benign protocol choices against UPGen.

O
O

D
P

ro
to Classifier In-distribution OOD

TPR FPR TPR FPR

C
ur

ve
ZM

Q Deep Fingerprinting 1.00 0.00 0.25 1.00
Decision Tree 1.00 0.00 0.93 1.00
Random Forest 1.00 0.00 0.81 1.00
nPrintML 1.00 0.00 1.00 1.00

se
ci

o

Deep Fingerprinting 0.99 0.05 0.04 0.90
Decision Tree 1.00 0.00 0.94 0.89
Random Forest 1.00 0.00 0.36 1.00
nPrintML 1.00 0.00 1.00 1.00

SS
H

Deep Fingerprinting 0.99 0.00 0.20 0.41
Decision Tree 1.00 0.00 0.97 1.00
Random Forest 1.00 0.00 1.00 1.00
nPrintML 1.00 0.00 1.00 1.00

TL
S

Deep Fingerprinting 1.00 0.00 0.00 1.00
Decision Tree 1.00 0.00 0.20 1.00
Random Forest 1.00 0.00 0.79 1.00
nPrintML 1.00 0.00 1.00 1.00

N
oi

se
(V

al
id

at
io

n) Deep Fingerprinting 0.99 0.00 0.01 1.00
Decision Tree 1.00 0.00 0.99 1.00
Random Forest 1.00 0.00 0.78 1.00
nPrintML 1.00 0.00 1.00 1.00

periments. This suggests that the classifier is indeed learning
the distribution of protocols in the training set. However, in
the vast majority of cases, the classifier’s out-of-distribution
(OOD) false-positive rate is nearly 100%. Only in a single
case (where SSH is the OOD protocol and DF is the classifier)
is the false-positive rate less than 89%, and in this case the
UPGen true positive rate is only 20%.

For comparison, we ran the same set of experiments, but
instead of UPGen protocols, we used flows generated between
an Obfs4 client and server. Obfs4 is a fully encrypted proto-
col (FEP) popular for censorship circumvention [89]. As a
FEP, Obfs4 does not have obvious content fingerprints; how-
ever, unlike UPGen, it is not designed to have similarities to
real-world encrypted protocols and has been observed to be
distinguishable from benign traffic [81, 82]. Our experiments
test if Obfs4 is also distinguishable in our experimental setup.

The results are shown in Table 4. Similar to UPGen, Obfs4
succeeds against the nPrintML classifier, likely due to its
completely random message values. However, performance
is far worse for the packet-length sequence classifiers. For
example, the Deep Fingerprinting classifiers identify Obfs4 in
3 of 4 instances with no OOD collateral damage. Moreover,
due to their perfect TPRs, we observe that the DF and Random
Forest classifiers could be combined via logical-AND (i.e.,
indicate positive if both classifiers indicate positive) to yield

Table 4: Testing classification true positive rate (TPR) and
false positive rate (FPR) of machine learning classifiers and
out-of-distribution benign protocol choices against Obfs4.

O
O

D
P

ro
to Classifier In-distribution OOD

TPR FPR FPR

C
ur

ve
ZM

Q Deep Fingerprinting 1.00 0.00 0.00
Decision Tree 0.99 0.00 0.00
Random Forest 1.00 0.00 0.58
nPrintML 1.00 0.00 1.00

se
ci

o

Deep Fingerprinting 1.00 0.00 0.00
Decision Tree 0.99 0.00 0.09
Random Forest 1.00 0.00 0.00
nPrintML 1.00 0.00 1.00

SS
H

Deep Fingerprinting 1.00 0.00 0.00
Decision Tree 0.99 0.00 0.20
Random Forest 1.00 0.00 1.00
nPrintML 1.00 0.00 1.00

TL
S

Deep Fingerprinting 1.00 0.00 1.00
Decision Tree 1.00 0.00 1.00
Random Forest 1.00 0.00 0.00
nPrintML 1.00 0.00 1.00

a classifier with perfect TPR and FPR in every case (no such
combination is similarly successful against UPGen).

Our results suggest that the UPGen system would be dif-
ficult to block without significant collateral damage. Our
experiments are in a conservative setting where application
behavior is fixed, which allows the censor to focus entirely on
protocol features, and despite that the UPGen classifiers still
fail to generalize well to unknown protocols. This stands in
contrast to the popular Obfs4 protocol, for which our experi-
ments show classifiers are typically successful in generalizing
to unknown protocols.

4.3.4 Analysis

Given the experimental setup, we consider why UPGen
evaded accurate classification. UPGen is capable of produc-
ing protocols with a variety of features, and in many cases it
can reproduce the fields or behavior of real-world protocols.
For example, UPGen can produce type, length, and version
fields with the same positions, sizes, and values as TLS 1.2.
Like SSH, an UPGen protocol may begin with an exchange
of human-readable greeting strings. In the data phase, UP-
Gen protocols may have the same message layout as secio, in
which a four-byte length field is followed by encrypted data
and a MAC tag. As a final example from our experimental be-
nign protocols, CurveZMQ is a layered TCP protocol, where
the CURVE mechanism provide security and is sent over the
ZMTP transport. Both layers include their own client-server
version negotiation. UPGen can produce the same sequence
of message sizes at the beginning of a connection via its sub-

9

Table 5: Fraction of protocol flows that were known (K),
misidentified (M), and unknown (U) by DPI tools.

Protocol libprotoident nDPI Zeek

K M U K M U K M U

CurveZMQ 0 0 1.0 1.0 0 0 0 0 1.0
Noise 0 0 1.0 0 0 1.0 0 0 1.0
Obfs4 0 0 1.0 0 0 1.0 0 0 1.0
secio 0 0 1.0 0 0 1.0 0 0 1.0
SSH 1.0 0 0 1.0 0 0 1.0 0 0
TLS 1.0 0 0 1.0 0 0 1.0 0 0
UPGen 0 0.07 0.93 0 0 1.0 0 0 1.0

protocol behavior, which resembles separate protocol layers
performing their own handshakes. UPGen need not com-
pletely mimic any of these protocols (and indeed does not
try to), as simply being able to reproduce many of the same
features can make its protocols difficult to distinguish from
unknown real-world encrypted protocols which also combine
such features in ways unknown to the adversary.

4.4 Analysis of Unidentified Protocols

A key assumption behind the security of UPGen is that the
censor will not block traffic that it cannot identify. We look
into the validity of this assumption by considering the extent
to which existing tools for protocol detection fail to recognize
benign traffic flows. If such failure occurred for a significant
type or fraction of benign traffic, that would provide evidence
that blocking unidentified flows would produce non-trivial
collateral damage.

We perform an analysis using 3 common open-source tools
for deep packet inspection: (1) Zeek with Dynamic Protocol
Detection (DPD) [58]; (2) LibtraceTeam’s libprotoident [1];
and (3) ntop’s nDPI [55]. Each tool is designed to classify
protocol traffic from a PCAP file and has modes of operation
that use only payload information; that is, classification can
be performed for protocols running on uncommon ports. We
first run these tools on the trace datasets described in §4.3.1.

Table 5 shows the inference results for each protocol. We
found that Zeek recognized only TLS and SSH flows but did
not misidentify (that is, incorrectly label) any UPGen flows.
We found that libprotoident and nDPI have inconsistent cover-
age: libprotoident recognizes SSH, TLS, and misidentified 7%
of UPGen flows, whereas nDPI also recognized CurveZMQ
but did not misidentify any UPGen traffic. When UPGen
flows were misidentified by libprotoident, it was most often
labeled as belonging to the Real-Time Messaging Protocol
(RTMP). No tool recognized secio or Noise protocol traffic.
Our results suggest that, for our small sample of protocols,
allowlisting could not be implemented without inadvertently
blocking benign protocols.

Table 6: libprotoident recognition rates for TCP flows from
the WIDE data set. The top 10 labels are shown. Approxi-
mately 4% of flows were not recognizable.

Label Count Label Count

Total flows 205,127

1. HTTPS 123,681 (60%) 6. DNS_TCP 5,029 (2%)
2. SSH 22,808 (11%) 7. RDP 2,804 (1%)
3. HTTP 20,818 (10%) 8. SMTP 2,483 (1%)
4. SSL/TLS 11,018 (5%) 9. RFB 2,480 (1%)
5. Unknown_TCP 7,749 (4%) 10. IMAPS 2,241 (1%)

To further validate these results, we ran these tools on the
MAWI WIDE packet capture data set [14]. This data set
contains ordinary and research experiment network traffic
captured from Japanese academic backbone networks. In this
experiment, we used TCP packets from a 15 minute capture
from 2024-03-01 recorded at samplepoint-F. As a privacy
measure, the traffic packet capture length is set to 96 bytes,
so only a portion of the TCP payload is available. The WIDE
packet captures contain no UPGen flows, but can be used to
better quantify the rate that unrecognized TCP flows occur in
the real world.

Our findings show disagreements among the DPI tools.
First, Zeek reported that the capture contained 244,039 flows,
nDPI reported 305,513 flows, and libprotoident reported
205,127 flows. Zeek did not recognize 90% of the flows and
nDPI did not recognize 67% of the flows (Appendix C shows
the full classification results). The results for libprotoident are
summarized in Table 6. This tool is designed to analyze only
the first 4 bytes of payload data in each direction, so its rate of
unrecognized traffic is much lower (∼4%). However, libpro-
toident failed to produce labels for as many as 100,000 flows
(nDPI reported there were 300,000 flows). Overall, these
results suggest that it is common for unrecognized protocol
traffic to exist in real-world captures and hence allowlisting
could not be implemented without incurring significant rates
of collateral damage—at least 4%, whereas prior work con-
tends that false-positive blocking rates must be exceedingly
small, for example, less than 0.6% [81, 87].

5 Performance

We evaluate UPGen protocol performance using synthetic
benchmarks and large-scale distributed-system simulation.

5.1 Laboratory Benchmarks
We run multiple data transfer benchmarks in order to un-
derstand the performance capabilities of UPGen-generated
protocols relative to related transport protocols. We run the
experiments using three identical machines, each containing a

10

28-core (56 HT) Intel Xeon E5-2697 CPU clocked at 2.6 GHz,
256 GiB of RAM, and a direct connection to a 10 Gbit/s net-
work switch. We mirror a common VPN setup (one of our
target deployment scenarios from §2) wherein each machine
is assigned one of the following roles:

Client Runs instances of a programmable traffic-generation
tool called tgen in client mode. The tgen clients tunnel
random data through a localhost process that runs a proxy
transport protocol in client mode.

Proxy Runs a single proxy server process that accepts proxy
client connections, and for each it runs the proxy transport
protocol in server mode. Data is forwarded bidirectionally
between these proxy tunnels and tgen servers.

Server Runs 56 tgen server processes and a load balancer to
facilitate the data transfers initiated by the tgen clients.

We evaluate multiple client↔proxy transport protocols: UP-
Gen protocols, TLS, Obfs4, and a baseline Dummy protocol
that simply forwards data without encryption. We consider
three cases for UPGen-generated protocols: (1) best is the
smallest-overhead protocol composed of 2–4 header fields
and 1 handshake round trip; (2) avg is a set of randomly
sampled protocols; and (3) worst is the largest-overhead pro-
tocol composed of 5–7 header fields and 4.5 handshake round
trips. The UPGen protocols are executed using proteus,
our custom version of the Proteus programmable censorship-
circumvention system. TLS is realized with socat+openssl
configured with TLS 1.3 and the same cipher used by
proteus (ECDHE-ECDSA-CHACHA20-POLY1305). For Obfs4
we use the lyrebird+goptlib implementation with its de-
fault settings, which include message padding. We use the
Dummy implementation available in goptlib. We evaluate
the latency, throughput, and scalability of each protocol.

Latency. We define latency here as the elapsed time from
when a tgen client initiates an outgoing TCP connection un-
til the first tgen payload byte is received on that connection.
Therefore, a latency measurement includes the time required
to establish a TCP connection between the proxy client and
server, complete any required proxy protocol handshake, es-
tablish a TCP connection between the proxy server and the
tgen server, and to forward the tgen request and response
between the proxy tunnel and the server. In this experiment,
we first use the Linux kernel’s netem module to add a 25 ms
bidirectional delay on the client↔proxy and proxy↔server
links; thus, the total client↭server RTT is 100 ms. We then
sequentially complete 1,000 1-byte tgen transfers, each from
the client to the server and then back to the client, for each
transport protocol and report the minimum observed latency
(i.e., time to first byte) per protocol. For the UPGen avg case,
we compute the minimum observed latency for each of 20
randomly sampled protocols, and report the mean of these
values with 95% confidence intervals (CIs).

Our latency results are shown in Table 7. We find that, as
expected, the latency of proxy protocols is highly dependent

Table 7: Summary of performance benchmark results.

Proxy Latency Throughput Scalability
Protocol TTFB ms Gbit/s / core #Sockets GiB RAM

Dummy 211 18.4 43,248 0.61
Obfs4 212 4.65 47,826 5.96
TLS 313 9.42 49,990 12.4
UPGen→best 252 4.25 50,000 2.25
UPGen→avg 420 ± 50 4.0 ± 0.2 50,000 2.63 ± 0.02
UPGen→worst 677 3.70 50,000 2.88

on the number of handshake rounds. We observe that the
Dummy protocol achieves the lowest latency since, unlike the
other protocols, it has no application-layer handshake. Lower
latency is achieved with the UPGen→best protocol (1-round
handshake) than with both TLS (2-round handshake) and the
UPGen→worst protocol (4.5-round handshake). Overall, we
conclude that the protocol handshakes generated by UPGen
produce latency effects that are comparable to those observed
in related proxy protocols.

Throughput. We define throughput here as the sum of the
number of bytes sent and received over the network during a
given second. In this experiment, we first pin the proxy server
process to a single CPU core (using taskset -c 0) so we
can isolate single-core performance. We then run 100 tgen
clients in parallel that each simultaneously send and receive
100 MiB through the proxy server while measuring proxy
server throughput using the dstat resource monitor. We
repeat the experiment for each proxy protocol and report the
mean observed throughput per second per protocol. For the
UPGen avg case, we compute the mean observed throughput
per second for each of 10 randomly sampled protocols, and
report the mean of these values with 95% CIs. Note that the
netem delays are not applied here.

Our single-core throughput results are shown in Table 7.
Dummy again performs best: it is highly efficient since it
does not perform encryption and uses the splice() syscall
to avoid copying data into userspace. TLS, which is typically
highly optimized, is the highest-throughput encrypting proxy
among those tested. UPGen throughput is slightly lower
than Obfs4, which is expected since UPGen protocols can
have larger headers than Obfs4 and are also processed by the
proteus run-time interpreter. Overall, we conclude that all
tested protocols achieve multi-gigabit throughput per CPU
core, which we believe is sufficient to support real-world
workload demands on common hardware.

Scalability. We measure the amount of RAM used by the
proxy server as the number of simultaneously active TCP
sockets increases. In this experiment, we run 50 tgen clients
in parallel that each creates 500 connections through the proxy
server at a rate of one connection per second and then attempts
to both send and receive 10 packets per second to/from the
tgen server. Thus, the proxy server will accept 25,000 TCP

11

https://github.com/shadow/tgen

0 10 20 30 40 50

TCP Socket Count ×103

0.0

2.5

5.0

7.5

10.0

12.5

R
A

M
(G

iB
)

TLS
Obfs4
UPGen→worst
UPGen→avg
UPGen→best
Dummy

Figure 2: Memory usage is roughly linear in the number of
active sockets for all tested proxy protocols. Dummy and
Obfs4 both use goptlib and resulted in significantly fewer
than the target 50,000 sockets due to connection errors.

connections from the clients, and will create an additional
25,000 TCP connections to the tgen server. We again use the
dstat resource monitor to track the number of open sockets
and memory usage over time, and repeat the experiment for
each proxy protocol.

Our scalability results are visualized in Figure 2 while the
maximum RAM and socket counts are summarized in Table 7.
For the UPGen avg case, we compute the maximum RAM
and socket counts for each of 10 randomly sampled proto-
cols, and report the mean of these values with 95% CIs. We
observe that the UPGen protocols executed in proteus are
the only to successfully maintain all attempted connections,
while connection errors were present for all of TLS, Obfs4,
and Dummy. Obfs4 and Dummy in particular had a higher
error rate, which we suspect could be because they both use
goptlib. Dummy has particularly low RAM usage of at
most 0.61 GiB due to its use of splice() in lieu of applica-
tion buffers. We observe that the UPGen protocols used less
than half as much RAM as Obfs4 and about a fifth as much
as TLS. We find that UPGen protocols meet or exceed the
performance of other common proxy protocols.

5.2 Distributed-System Simulation
We extend our UPGen performance evaluation to consider
another of our target deployment scenarios: the Tor network.
We evaluate UPGen performance in Tor using Shadow, a
high-fidelity, discrete-event, distributed-system simulation
tool [38]. Shadow is a hybrid between a simulator and emula-
tor: it directly executes real, unmodified applications directly
on bare-metal Linux installations, but co-opts the applica-
tion processes into a deterministic network simulation with
complete control over time and network communication [39].
This combination of features enables a high degree of both
realism and scalability.

We set up our private Tor network experiments following a
recently published methodology [40]. In particular, we use
the tornettools Tor network model generator [74], pub-

0 2 4 6 8

TTLB 50 KiB (s)

0.0

0.9

0.99

0.5
0.6
0.7

0.8

0.95
0.96
0.97

0.98

C
D

F
(t

ai
l-

lo
g

sc
al

e)

Tor
Shadow

0 5 10 15 20 25

TTLB 1 MiB (s)

Tor
Shadow

0 30 60 90

TTLB 5 MiB (s)

Tor
Shadow

Figure 3: The time to last byte (TTLB) across many trans-
fers of 50 KiB, 1 MiB, and 5 MiB in the public Tor network
during 2024-01-01 to 2024-03-31 and across 20 private Tor
networks running in Shadow (with 95% CIs; see [40]).

licly available Tor metrics data from 2024-01-01 to 2024-03-
31 [73], and Tor network traffic models [41] to construct 20
representative private Tor networks at a scale of 20% of the
size of the public Tor network. These 20 baseline Tor net-
works consist of 1,527 Tor nodes and 1,755 traffic generation
processes that create 950,000 circuits every 10 minutes and
emulate the simultaneous traffic load of 150,000 users. We
show in Figure 3 how our baseline networks closely approxi-
mate public Tor performance during our modeling period.1

We extend each of the 20 baseline networks to include (1) a
Tor relay running in bridge mode configured with a symmetric
bandwidth of 100 Mbit/s, and (2) 100 Tor bridge clients that
tunnel their traffic through the bridge relay using the config-
ured proxy protocol. Each client runs a traffic generator that
starts a 2.5 MB transfer through the bridged Tor network to
a server every minute on average. From this we construct
four experiments using the Dummy, Obfs4, UPGen→best,
and UPGen→worst proxy protocols (see §5.1), where each
experiment consists of 20 simulation trials.

We run our simulations in a blade server cluster in which
each blade contains identical hardware: 2×18 core (72 HT)
Intel Xeon Gold 6354 CPUs clocked at 3 GHz and 1 TiB of
RAM. Each blade is configured to run a minimal version of
Debian 12 with Linux kernel v6.1.0, and each simulation is
run within an Apptainer container [4] with Tor v0.4.8.11 and
Shadow at commit 60c815d.

The results of our experiments are shown in Figure 4. For
each experiment (composed of 20 simulations), we produce a
single CDF of the 2.5 MB transfer times with shaded 95% CIs
following the method of Jansen et al. [40, § 5]. Our results do
not indicate that performance is significantly different among
the four proxy protocol variants. Thus, we believe that the
full range of UPGen protocols will be capable of handling re-
alistic workload demands in large-scale Tor networks without
introducing performance concerns.

1We set the tornettools option --load_scale=3.2 after experimen-
tally finding that it leads to the best estimate of public Tor performance.

12

https://github.com/shadow/shadow/tree/60c815db1e1e655329ce3ee9f2ae8bf927e50775

0.5 1.0 1.5

Time to First Byte (s)

0.0

0.9

0.99

0.5
0.6
0.7

0.8

0.95
0.96
0.97

0.98

C
D

F
(t

ai
l-

lo
g

sc
al

e)

Dummy
Obfs4
UPGen→best
UPGen→worst

0 20 40

Time to Last Byte (s)

Dummy
Obfs4
UPGen→best
UPGen→worst

Figure 4: Performance metrics for 2.5 MB transfers using the
bridge proxy protocol variants, across 20 private Tor networks
running in Shadow (with 95% CIs; see [40]). The measured
performance difference is not significant.

6 Real-World Censorship

Real-world censors have demonstrated their capability to iden-
tify and block fully encrypted protocols en masse. In particu-
lar, Wu et al. infer a number of simple entropy-based heuris-
tics that China’s Great Firewall (GFW) previously used to
block Shadowsocks [86].

UPGen produces structured encrypted protocols that con-
tain features of deployed, real-world encrypted protocols. To
evaluate how well these structural features distinguish UPGen-
produced protocols from fully encrypted protocols—and
equivalently, whether attempts at blocking fully encrypted pro-
tocols might inadvertently block UPGen-produced protocols—
we perform an experiment in which 1000 UPGen-generated
PSFs are used to traverse a censor. Since China deactivated
their censorship of fully encrypted protocols, we perform our
experiment in a lab setting using OpenGFW, an open-source
blocking system designed to mimic the behavior of the Great
Firewall [57]. We use OpenGFW’s Fully Encrypted Traffic
(FET) analyzer, which is based on the heuristics identified
by Wu et al. [86]. As a workload, we use the tgen traffic
generator to mimic a web fetch, carried out over each of the
1000 protocols. For comparison, we also attempt the same
web fetches using 1000 Obfs4 instantiations.

We find that 562 (56.2%) of the UPGen-generated pro-
tocols and four (0.4%) of our Obfs4 configurations yielded
successful fetches. We note that Obfs4’s success rate (0.4%)
is expected, since the OpenGFW ruleset allows protocols
that have printable characters in the first 6 bytes; this occurs
with probability (6/16)6 ≈ 0.28% for a random protocol. More
than half of the UPGen-produced protocols are not blocked by
OpenGFW’s ruleset. These include all protocols with greeting
strings (which UPGen generates with 25% probability) and
protocols that have structural components (e.g., unencrypted
type and length fields) that lower the entropy outside of the
range specified in the OpenGFW ruleset.

Our OpenGFW results indicate that, during UPGen deploy-
ment, it would be beneficial to provision a few protocols to

each proxy and their clients to increase the probability that
they can withstand a fully encrypted traffic blocking event.

Deployment. We additionally performed a small real-
world experiment to verify that UPGen performs as expected
when deployed in a censored region of the internet. We in-
stalled proteus proxies on a machine running at our insti-
tution (located in North America) and on a Google Cloud
(GCP) instance in the us-central1-a zone. Using a popu-
lar Chinese VPS provider, we operated proteus clients on
VMs located in Beijing, Guangzhou, and Shanghai. proteus
clients and servers were configured to use the same UPGen-
generated PSF. As a workload, clients and servers ran tgen,
using a traffic model that mimicked a small web transfer. Each
client attempted five such transfers every 30 minutes, continu-
ously for two weeks in April 2024. As a point of comparison,
we also operated Obfs4 bridges (at our institution and on
GCP) and clients (in China), and again used tgen to attempt
periodic transfers. We used separate VMs to ensure that no
single client or server machine used both proteus and Obfs4.

We found no evidence of censorship during our experiment
with either Obfs4 or our UPGen-generated protocol. The
Obfs4 connections were unlikely to be interrupted since the
GFW does not currently block fully encrypted protocols. Our
results indicate that, at least in our tested locations, UPGen-
generated protocols do not currently trigger blocking rules.

7 Discussion

There are many potential strategies to generate and distribute
UPGen PSFs. In the simplest case, the Generator produces
a single PSF for each proxy. However, censorship strategies
vary over time and across locations. Some censors may also
accept more collateral damage at sensitive times. Moreover,
we observe in our laboratory results and GFW analysis that
some PSFs result in traces that consistently evade detection
while connections via other PSFs are entirely blocked. There-
fore, we expect that in practice the Generator will want to
either replace PSFs if they start being blocked or run multiple
PSFs to serve clients in different censorship regimes simul-
taneously. Our use of Proteus as the PPS supports such a
use because Proteus can attempt to use multiple PSFs when
establishing a connection to eventually determine which one
a client is using. Proxies thus can add freshly generated PSFs
to attempt to evade new blocking rules while existing clients
can still use the old PSFs to the extent that the new rules are
not being uniformly applied. Similarly, proxies can initially
receive multiple generated PSFs from the generator, which
clients can try until they find one that works for them.

We acknowledge some limitations of UPGen that we leave
for future work. First, we note that UPGen does not perform
any traffic shaping. Some circumvention protocols, such as
Obfs4, add traffic padding, which may help hide the presence
of circumvention traffic that otherwise contains detectable
patterns of traffic tunneling [29, 81, 87]. UPGen is targeted

13

at preventing detection and blocking at the protocol level,
that is, when detection is not dependent on the number of
payload bytes. UPGen protocols do support payload padding,
however, and thereby provide support to future solutions for
hiding any distinctive patterns of tunneled traffic.

Second, UPGen is not designed to be secure against an
active attacker. An active censor could drop, inject, or mod-
ify packets. The encrypted fields in an UPGen protocol are
authenticated, but the protocol simply closes the connection
after modified encrypted data is received and fails to decrypt.
Such action is not uniform across encrypted protocols, such
as TLS which uses Alert messages to signal errors. UPGen
also makes no special attempt to be silent during active prob-
ing [24], and a connection attempt from a malicious client
without the secret key may succeed up until encrypted data is
expected, at which point the decryption will fail.

Third, the system currently only directly supports tunnel-
ing one TCP connection per UPGen connection. It has no
direct support for multiplexing proxied connections, although
additional systems such as Tor can be used on top of UPGen
to provide multiplexing. Similarly, mapping a proxied con-
nection across multiple overt connections could improve both
security and performance [22].

Finally, UPGen depends on the existence of unblocked
proxies. Keeping such proxies hidden from the censor while
distributing them to clients is a challenging problem, although
one that many censorship circumvention systems face. Tor,
for example, has multiple distribution channels for disjoint
pools of proxies, including Telegram and email [48], and they
are currently integrating Lox [76].

8 Related Work

There has been a large number of proposed censorship eva-
sion systems, and they can be categorized by the general
circumvention technique they employ.

Fully Encrypted Protocols. The family of fully encrypted
protocols (FEPs) includes Scramblesuit [85], Obfs4 [89],
Shadowsocks [15], Lantern [45], VMess [78], and obfus-
cated versions of some common VPNs [88]. The complete
byte-level randomization of FEPs is a fingerprint that has been
used by researchers [81, 82] to distinguish them from other
traffic and by a nation-state censor to detect and block them
in the real world [2, 86].

Tunneling. The tunneling family of protocols tunnel cir-
cumvention traffic inside of other innocuous traffic to evade
censors. Examples include Facet [46], DeltaShaper [6], and
CovertCast [50]. Tunneling systems often create inconsis-
tencies between protocol layers that can be exploited by cen-
sors [7, 18, 29, 44, 87], or rely on realistic user models while
exhibiting poor performance [80].

Using TLS as a cover protocol for tunneled traffic is an espe-
cially popular example of this approach, used in HTTPT [25],
domain fronting [23], and V2Ray [63]. TLS is a common

encrypted protocol, and so blocking it has high collateral dam-
age, and it could therefore be a preferable approach to UPGen
against an allowlisting censor. However, it has some limita-
tions that UPGen avoids. First, TLS has many parameters
that can be used to recognize the particular configuration used
by a circumvention tool [26]. For example, countries includ-
ing China and Iran have detected Tor connections using the
contents of the TLS Client Hello message [75]. Second, the
Encrypted SNI (ESNI) and Encrypted Client Hello features
of TLS 1.3, which hide key connection metadata, are blocked
by some censors. For example, in 2020 China began block-
ing TLS connections with ESNI [11]. Third, mimicking the
TLS configuration of a popular, benign application requires
continual reconfiguration.

Programmable Evasion. Marrionette [19], Proteus [79],
and WATER [13] are programmable frameworks designed to
support multiple protocols within the same software. In a pro-
grammable framework, clients can reconfigure the protocol
behavior without requiring new software downloads. How-
ever, little has been done to suggest how to configure effective
protocols within these frameworks, which is a research gap
we target in this paper.

Protocol Mimicry. Although our work is focused on strate-
gies against a blocklisting censor, protocol mimicry may be
one of the few viable strategies against an allowlisting cen-
sor. Systems using mimicry include StegoTorus [84], which
mimics innocuous HTTP traffic, SkypeMorph [51], which
targets Skype connections, and CensorSpoofer [83], which
emulates VoIP. Any mimicry approach will face the challenge
of precisely mimicking a protocol to avoid introducing small
variations that can be used to identify censorship evasion; this
has been shown to be a challenging task [35].

9 Conclusion

We present the design, implementation, and evaluation of UP-
Gen, a new system for censorship evasion. The core of UPGen
is a generator that produces a very large number of plausible
but unlinkable encrypted protocols. Different generated pro-
tocols are to be used at every proxy, and UPGen is designed
so that methods for detecting some of its protocols do not
generalize well to the rest. Our security evaluation demon-
strates that a blocklisting censor with incomplete knowledge
of benign encrypted protocols will be unable to block UPGen
without incurring collateral damage by also blocking many
of the unknown protocols. It also shows that most UPGen
protocols would not be blocked by rules observed targeting
popular FEP circumvention tools, and a real-world evaluation
shows that UPGen protocols would not currently be blocked if
deployed in China. Our performance evaluation demonstrates
that UPGen protocols achieve high performance and function
correctly in a large-scale Tor network.

14

Ethics Considerations

The design of our system is intended to promote free and open
communications. We primarily performed lab experiments
using synthetic data that we generated. We did perform cen-
sorship tests from China. Those tests were performed from
machines we rented commercially to machines we control
located on our research network or on a GCP VM. The rate
of test connections was low and unlikely to interfere with
genuine user traffic.

Open Science

We have made the following research artifacts publicly avail-
able on the Zenodo research repository at the following URL:
https://doi.org/10.5281/zenodo.15491977
1. the implementation of the generator component of UPGen

that we used in our experiments
2. the extended version of Proteus that includes support for

UPGen-generated protocols
3. the encrypted-traffic generator that we used to produce

traces for our experiments
4. the Proteus PSFs that we used in our experiments

We have also made some of our code available on Github to
support future development efforts.
1. We have made the UPGen generator component available

at the following URL:
https://github.com/unblockable/upgen

2. We have merged our UPGen extensions into version 0.2.0
of Proteus, which is available at the following URL:
https://github.com/unblockable/proteus

Acknowledgments

We thank the anonymous reviewers and especially our shep-
herd for their thoughtful feedback which has helped us im-
prove the paper. This work was supported by the Office
of Naval Research (ONR), the Defense Advanced Research
Projects Agency (DARPA) through contract FA8750-19-C-
0500, and Georgetown University through the Callahan Fam-
ily Chair and the Farr Faculty Award. The findings and opin-
ions expressed in this paper are those of the authors and do
not necessarily reflect those of the funding agencies and orga-
nizations.

References

[1] Shane Alcock and Richard Nelson. Libprotoident: Traffic Classifi-
cation Using Lightweight Packet Inspection. ResearchGate preprint,
2012. eprint: https://www.researchgate.net/publication/
268404135_Libprotoident_Traffic_Classification_Using_
Lightweight_Packet_Inspection.

[2] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. How China
Detects and Blocks Shadowsocks. In IMC ’20. ACM, 2020. DOI:
10.1145/3419394.3423644.

[3] American National Standard for Protocol Specification for Interfacing
to Data Communication Networks. (C12.22). NEMA, 2020. URL:
https://www.nema.org/Standards/view/American-National-
Standard-for-Protocol-Specification-for-Interfacing-
to-Data-Communication-Networks.

[4] Apptainer - Portable, Reproducible Containers. The Apptainer Project.
2024. URL: https://apptainer.org (visited on 12/05/2024).

[5] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta, editors.
MQTT Version 5.0. OASIS Standard. 2019. URL: https://docs.
oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

[6] Diogo Barradas, Nuno Santos, and Luís Rodrigues. DeltaShaper: En-
abling Unobservable Censorship-resistant TCP Tunneling over Video-
conferencing Streams. PoPETs, 2017(4), 2017. DOI: 10.1515/
popets-2017-0037.

[7] Diogo Barradas, Nuno Santos, and Luís Rodrigues. Effective Detec-
tion of Multimedia Protocol Tunneling using Machine Learning. In
USENIX Security ’18. USENIX Assn, 2018. eprint: https://www.
usenix.org/conference/usenixsecurity18/presentation/
barradas.

[8] Mark Baugher, David McGrew, Mats Naslund, Elisa Carrara, and
Karl Norrman. The Secure Real-time Transport Protocol (SRTP).
(3711) in Request for Comments (RFC). IETF. 2004. URL: https:
//datatracker.ietf.org/doc/html/rfc3711.

[9] Daniel J. Bernstein. CurveCP: Usable security for the Internet. Ver-
sion 2017.01.22. 2017. URL: https://www.curvecp.org/index.
html (visited on 10/27/2023).

[10] Andrea Bittau, Daniel Giffin, Mark Handley, David Mazieres, Quinn
Slack, and Eric Smith. Cryptographic Protection of TCP Streams
(tcpcrypt). (8548) in Request for Comments (RFC). IETF. 2019. URL:
https://datatracker.ietf.org/doc/html/rfc8548.

[11] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino, David Fi-
field, Amir Houmansadr, and Dave Levin. Exposing and Circumvent-
ing China’s Censorship of ESNI. 2020. URL: https://gfw.report/
blog/gfw_esni_blocking/en/ (visited on 05/09/2025).

[12] BOLT #8: Encrypted and Authenticated Transport. Version 7f53a3e.
Lightning Network. 2023. URL: https : / / github . com /
lightning/bolts/blob/master/08-transport.md.

[13] Erik Chi, Gaukas Wang, J. Alex Halderman, Eric Wustrow, and
Jack Wampler. Just add WATER: WebAssembly-based Circum-
vention Transports. In FOCI ’24, 2024. eprint: https://www.
petsymposium.org/foci/2024/foci-2024-0003.php.

[14] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic Data Repos-
itory at the WIDE Project. In Freenix Track: USENIX ATC. USENIX
Assn, 2000. eprint: http://www.usenix.org/publications/
library/proceedings/usenix2000/freenix/cho.html.

[15] clowwindy (psuedonym). Shadowsocks. 2022. URL: https://
shadowsocks.org/ (visited on 11/26/2023).

[16] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. (5246) in Request for Comments (RFC). IETF.
2008. URL: https : / / datatracker . ietf . org / doc / html /
rfc5246.

[17] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network
Tunnel. Version e2da747, 2020. eprint: https://www.wireguard.
com/papers/wireguard.pdf.

[18] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas
Shrimpton. Peek-a-Boo, I Still See You: Why Efficient Traffic
Analysis Countermeasures Fail. In S&P ’12. IEEE, 2012. DOI:
10.1109/SP.2012.28.

15

https://doi.org/10.5281/zenodo.15491977
https://github.com/unblockable/upgen
https://github.com/unblockable/proteus
https://www.researchgate.net/publication/268404135_Libprotoident_Traffic_Classification_Using_Lightweight_Packet_Inspection
https://www.researchgate.net/publication/268404135_Libprotoident_Traffic_Classification_Using_Lightweight_Packet_Inspection
https://www.researchgate.net/publication/268404135_Libprotoident_Traffic_Classification_Using_Lightweight_Packet_Inspection
https://doi.org/10.1145/3419394.3423644
https://www.nema.org/Standards/view/American-National-Standard-for-Protocol-Specification-for-Interfacing-to-Data-Communication-Networks
https://www.nema.org/Standards/view/American-National-Standard-for-Protocol-Specification-for-Interfacing-to-Data-Communication-Networks
https://www.nema.org/Standards/view/American-National-Standard-for-Protocol-Specification-for-Interfacing-to-Data-Communication-Networks
https://apptainer.org
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://doi.org/10.1515/popets-2017-0037
https://doi.org/10.1515/popets-2017-0037
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://www.curvecp.org/index.html
https://www.curvecp.org/index.html
https://datatracker.ietf.org/doc/html/rfc8548
https://gfw.report/blog/gfw_esni_blocking/en/
https://gfw.report/blog/gfw_esni_blocking/en/
https://github.com/lightning/bolts/blob/master/08-transport.md
https://github.com/lightning/bolts/blob/master/08-transport.md
https://www.petsymposium.org/foci/2024/foci-2024-0003.php
https://www.petsymposium.org/foci/2024/foci-2024-0003.php
http://www.usenix.org/publications/library/proceedings/usenix2000/freenix/cho.html
http://www.usenix.org/publications/library/proceedings/usenix2000/freenix/cho.html
https://shadowsocks.org/
https://shadowsocks.org/
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://doi.org/10.1109/SP.2012.28

[19] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette:
A Programmable Network Traffic Obfuscation System. In USENIX
Security ’15. USENIX Assn, 2015. eprint: https://www.usenix.
org / conference / usenixsecurity15 / technical - sessions /
presentation/dyer.

[20] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro
Larroy, Mu Li, and Alexander Smola. AutoGluon-Tabular: Robust
and Accurate AutoML for Structured Data. arXiv preprint, 2020. DOI:
10.48550/arXiv.2003.06505.

[21] Ellis Fenske and Aaron Johnson. Bytes to Schlep? Use a FEP: Hiding
Protocol Metadata with Fully Encrypted Protocols. In CCS ’24. ACM,
2024. DOI: 10.1145/3658644.3690198.

[22] David Fifield. Turbo Tunnel, a good way to design censorship cir-
cumvention protocols. In FOCI ’20. USENIX Assn, 2020. eprint:
https://www.usenix.org/system/files/foci20- paper-
fifield.pdf.

[23] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern
Paxson. Blocking-resistant communication through domain fronting.
PoPETs, 2015(2), 2015. DOI: 10.1515/popets-2015-0009.

[24] Sergey Frolov, Jack Wampler, and Eric Wustrow. Detecting Probe-
resistant Proxies. In NDSS ’20. ISOC, 2020. DOI: 10.14722/ndss.
2020.23087.

[25] Sergey Frolov and Eric Wustrow. HTTPT: A Probe-Resistant Proxy.
In FOCI ’20. USENIX Assn, 2020. URL: https://www.usenix.
org/conference/foci20/presentation/frolov.

[26] Sergey Frolov and Eric Wustrow. The use of TLS in Censorship
Circumvention. In NDSS ’19. ISOC, 2019. DOI: 10.14722/ndss.
2019.23511.

[27] Allie Funk, Kian Vesteinsson, and Grant Baker. Freedom on the
Net 2024: The Struggle for Trust Online, 2024. eprint: https://
freedomhouse.org/sites/default/files/2024-10/FREEDOM-
ON-THE-NET-2024-DIGITAL-BOOKLET.pdf.

[28] GameNetworkingSockets. Version v1.4.1. Valve Software.
2022. URL: https : / / github . com / ValveSoftware /
GameNetworkingSockets (visited on 08/16/2023).

[29] John Geddes, Max Schuchard, and Nicholas Hopper. Cover Your
ACKs: Pitfalls of Covert Channel Censorship Circumvention. In CCS
’13. ACM, 2013. DOI: 10.1145/2508859.2516742.

[30] Cesar Ghali, Adam Stubblefield, Ed Knapp, Jiangtao Li, Benedikt
Schmidt, and Julien Boeuf. Application Layer Transport Secu-
rity, Google Cloud, 2017. eprint: https : / / cloud . google .
com / static / docs / security / encryption - in - transit /
application-layer-transport-security/resources/alts-
whitepaper.pdf.

[31] Brian Gu and Kelvin Lu. Protocol Encryption and Message Stream
Encryption for WebTorrent. MIT Course Project, 2018. eprint: https:
//css.csail.mit.edu/6.858/2018/projects/bgu-kelvinlu.
pdf.

[32] Mathias Hall-Andersen, David Wong, Nick Sullivan, and Alishah
Chator. nQUIC: Noise-Based QUIC Packet Protection. In CoNEXT

’18. EPIQ ’18. ACM, 2018. DOI: 10.1145/3284850.3284854.

[33] Pieter Hintjens. CurveZMQ. (26) in ZeroMQ RFC. Protocol specifi-
cation. ZeroMQ. 2013. URL: https://rfc.zeromq.org/spec/26/
(visited on 10/27/2023).

[34] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal.
New Directions in Automated Traffic Analysis. In CCS ’21. ACM,
2021. DOI: 10.1145/3460120.3484758.

[35] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The Parrot
Is Dead: Observing Unobservable Network Communications. In S&P

’13. IEEE, 2013. DOI: 10.1109/SP.2013.14.

[36] ISMACryp. Wireshark. 2020. URL: https://wiki.wireshark.
org/ISMACryp.md (visited on 08/16/2023).

[37] Jana Iyengar and Martin Thomson, editors. QUIC: A UDP-Based
Multiplexed and Secure Transport. (9000) in Request for Comments
(RFC). IETF. 2021. URL: https://datatracker.ietf.org/doc/
html/rfc9000.

[38] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In NDSS ’12. ISOC,
2012. eprint: https://www.ndss-symposium.org/ndss2012/
shadow - running - tor - box - accurate - and - efficient -
experimentation.

[39] Rob Jansen, Jim Newsome, and Ryan Wails. Co-opting Linux Pro-
cesses for High-Performance Network Simulation. In USENIX ATC

’22. USENIX Assn, 2022. eprint: https://www.usenix.org/
system/files/atc22-jansen.pdf.

[40] Rob Jansen, Justin Tracey, and Ian Goldberg. Once is Never Enough:
Foundations for Sound Statistical Inference in Tor Network Experi-
mentation. In USENIX Security ’21. USENIX Assn, 2021. eprint:
https://www.usenix.org/conference/usenixsecurity21/
presentation/jansen.

[41] Rob Jansen, Matthew Traudt, and Nicholas Hopper. Privacy-
Preserving Dynamic Learning of Tor Network Traffic. In CCS ’18.
ACM, 2018. DOI: 10.1145/3243734.3243815.

[42] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swan-
son, Steven J. Murdoch, and Ian Goldberg. SoK: Making Sense
of Censorship Resistance Systems. PoPETs, 2016(4), 2016. DOI:
10.1515/popets-2016-0028.

[43] Jeffrey Knockel, Mona Wang, and Zoë Reichert. The Not-So-Silent
Type: Vulnerabilities in Chinese IME Keyboards’ Network Security
Protocols. In CCS ’24. ACM, 2024. DOI: 10.1145/3658644.
3690302.

[44] Carmen Kwan, Paul Janiszewski, Shela Qiu, Cathy Wang, and Cecylia
Bocovich. Exploring Simple Detection Techniques for DNS-over-
HTTPS Tunnels. In FOCI ’21. ACM, 2021. DOI: 10.1145/3473604.
3474563.

[45] lampshade. Version fe53f13. Lantern. 2020. URL: https://pkg.go.
dev/github.com/getlantern/lampshade.

[46] Shuai Li, Mike Schliep, and Nick Hopper. Facet: Streaming over
Videoconferencing for Censorship Circumvention. In WPES ’14.
ACM, 2014. DOI: 10.1145/2665943.2665944.

[47] Kyle MacMillan, Jordan Holland, and Prateek Mittal. Evaluating
Snowflake as an Indistinguishable Censorship Circumvention Tool.
arXiv preprint, 2020. DOI: 10.48550/arXiv.2008.03254.

[48] Making new connections: from BridgeDB to Rdsys. The Tor
Project. 2024. URL: https://blog.torproject.org/making-
connections-from-bridgedb-to-rdsys/.

[49] matthiasbock. Skype’s UDP Format. 2012. URL: https://github.
com/matthiasbock/OpenSkype/wiki/Skype%27s-UDP-Format
(visited on 10/27/2023).

[50] Richard McPherson, Amir Houmansadr, and Vitaly Shmatikov.
CovertCast: Using Live Streaming to Evade Internet Censorship.
PoPETs, 2016(3), 2016. DOI: 10.1515/popets-2016-0024.

[51] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani,
and Ian Goldberg. SkypeMorph: Protocol Obfuscation for Tor Bridges.
In CCS ’12. ACM, 2012. DOI: 10.1145/2382196.2382210.

[52] msgr2 Protocol. Protocol specification. Version a5776502. Ceph
Foundation. 2016. URL: https://docs.ceph.com/en/latest/
dev/msgr2/#msgr2-protocol (visited on 10/27/2023).

[53] Yusef Napora. noise-libp2p — Secure Channel Handshake. Protocol
specification. Version r5, 2022-12-07. 2022. URL: https://github.
com/libp2p/specs/blob/master/noise/README.md (visited on
10/27/2023).

16

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.1145/3658644.3690198
https://www.usenix.org/system/files/foci20-paper-fifield.pdf
https://www.usenix.org/system/files/foci20-paper-fifield.pdf
https://doi.org/10.1515/popets-2015-0009
https://doi.org/10.14722/ndss.2020.23087
https://doi.org/10.14722/ndss.2020.23087
https://www.usenix.org/conference/foci20/presentation/frolov
https://www.usenix.org/conference/foci20/presentation/frolov
https://doi.org/10.14722/ndss.2019.23511
https://doi.org/10.14722/ndss.2019.23511
https://freedomhouse.org/sites/default/files/2024-10/FREEDOM-ON-THE-NET-2024-DIGITAL-BOOKLET.pdf
https://freedomhouse.org/sites/default/files/2024-10/FREEDOM-ON-THE-NET-2024-DIGITAL-BOOKLET.pdf
https://freedomhouse.org/sites/default/files/2024-10/FREEDOM-ON-THE-NET-2024-DIGITAL-BOOKLET.pdf
https://github.com/ValveSoftware/GameNetworkingSockets
https://github.com/ValveSoftware/GameNetworkingSockets
https://doi.org/10.1145/2508859.2516742
https://cloud.google.com/static/docs/security/encryption-in-transit/application-layer-transport-security/resources/alts-whitepaper.pdf
https://cloud.google.com/static/docs/security/encryption-in-transit/application-layer-transport-security/resources/alts-whitepaper.pdf
https://cloud.google.com/static/docs/security/encryption-in-transit/application-layer-transport-security/resources/alts-whitepaper.pdf
https://cloud.google.com/static/docs/security/encryption-in-transit/application-layer-transport-security/resources/alts-whitepaper.pdf
https://css.csail.mit.edu/6.858/2018/projects/bgu-kelvinlu.pdf
https://css.csail.mit.edu/6.858/2018/projects/bgu-kelvinlu.pdf
https://css.csail.mit.edu/6.858/2018/projects/bgu-kelvinlu.pdf
https://doi.org/10.1145/3284850.3284854
https://rfc.zeromq.org/spec/26/
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1109/SP.2013.14
https://wiki.wireshark.org/ISMACryp.md
https://wiki.wireshark.org/ISMACryp.md
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc9000
https://www.ndss-symposium.org/ndss2012/shadow-running-tor-box-accurate-and-efficient-experimentation
https://www.ndss-symposium.org/ndss2012/shadow-running-tor-box-accurate-and-efficient-experimentation
https://www.ndss-symposium.org/ndss2012/shadow-running-tor-box-accurate-and-efficient-experimentation
https://www.usenix.org/system/files/atc22-jansen.pdf
https://www.usenix.org/system/files/atc22-jansen.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://doi.org/10.1145/3243734.3243815
https://doi.org/10.1515/popets-2016-0028
https://doi.org/10.1145/3658644.3690302
https://doi.org/10.1145/3658644.3690302
https://doi.org/10.1145/3473604.3474563
https://doi.org/10.1145/3473604.3474563
https://pkg.go.dev/github.com/getlantern/lampshade
https://pkg.go.dev/github.com/getlantern/lampshade
https://doi.org/10.1145/2665943.2665944
https://doi.org/10.48550/arXiv.2008.03254
https://blog.torproject.org/making-connections-from-bridgedb-to-rdsys/
https://blog.torproject.org/making-connections-from-bridgedb-to-rdsys/
https://github.com/matthiasbock/OpenSkype/wiki/Skype%27s-UDP-Format
https://github.com/matthiasbock/OpenSkype/wiki/Skype%27s-UDP-Format
https://doi.org/10.1515/popets-2016-0024
https://doi.org/10.1145/2382196.2382210
https://docs.ceph.com/en/latest/dev/msgr2/#msgr2-protocol
https://docs.ceph.com/en/latest/dev/msgr2/#msgr2-protocol
https://github.com/libp2p/specs/blob/master/noise/README.md
https://github.com/libp2p/specs/blob/master/noise/README.md

[54] National Cybersecurity Strategy, The White House, 2023. eprint:
https : / / bidenwhitehouse . archives . gov / wp - content /
uploads/2023/03/National-Cybersecurity-Strategy-2023.
pdf.

[55] nDPI: Open and Extensible LGPLv3 Deep Packet Inspection Library.
ntop. URL: https://www.ntop.org/products/deep-packet-
inspection/ndpi/ (visited on 05/14/2025).

[56] Open Internet Tools Project. Collateral Freedom: A Snapshot of Chi-
nese Internet Users Circumventing Censorship, 2013. eprint: https:
//www.upturn.org/static/files/CollateralFreedom.pdf.

[57] OpenGFW. Aperture Internet Laboratory. 2024. URL: https://
github.com/apernet/OpenGFW (visited on 2024).

[58] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. In USENIX Security ’98. USENIX Assn, 1998. eprint: https:
/ / www . usenix . org / conference / 7th - usenix - security -
symposium / bro - system - detecting - network - intruders -
real-time.

[59] Trevor Perrin. The Noise Protocol Framework. Version 34, 2018.
eprint: https://noiseprotocol.org/noise.pdf.

[60] W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein,
and Tanja Lange. MinimaLT: Minimal-latency Networking Through
Better Security. In CCS ’13. ACM, 2013. DOI: 10.1145/2508859.
2516737.

[61] Julien Piet, Dubem Nwoji, and Vern Paxson. GGFAST: Automating
Generation of Flexible Network Traffic Classifiers. In SIGCOMM ’23.
ACM, 2023. DOI: 10.1145/3603269.3604840.

[62] Julien Piet, Aashish Sharma, Vern Paxson, and David Wagner. Net-
work Detection of Interactive SSH Impostors Using Deep Learning.
In USENIX Security ’23. USENIX Assn, 2023. eprint: https://www.
usenix.org/conference/usenixsecurity23/presentation/
piet.

[63] Project V. URL: https : / / www . v2ray . com / en/ (visited on
05/09/2025).

[64] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. (8446) in Request for Comments (RFC). IETF. 2018. URL:
https://datatracker.ietf.org/doc/html/rfc8446.

[65] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer
Security Version 1.2. (6347) in Request for Comments (RFC). IETF.
2012. URL: https : / / datatracker . ietf . org / doc / html /
rfc6347.

[66] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem,
and Wouter Joosen. Automated Website Fingerprinting through Deep
Learning. In NDSS ’18. ISOC, 2018. DOI: 10.14722/ndss.2018.
23105.

[67] Frank La Rue. Report of the Special Rapporteur on the promotion and
protection of the right to freedom of opinion and expression. A/17/27,
United Nations General Assembly, Human Rights Council, 2011.
eprint: https://www2.ohchr.org/english/bodies/hrcouncil/
docs/17session/a.hrc.17.27_en.pdf.

[68] SECIO 1.0.0. IPFS. 2023. URL: https://github.com/libp2p/
specs/blob/master/secio/README.md.

[69] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. Object Security
for Constrained RESTful Environments (OSCORE). (8613) in Request
for Comments (RFC). IETF. 2019. URL: https://datatracker.
ietf.org/doc/html/rfc8613.

[70] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright.
Deep Fingerprinting: Undermining Website Fingerprinting Defenses
with Deep Learning. In CCS ’18. ACM, 2018. DOI: 10.1145/
3243734.3243768.

[71] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and
Matthew Wright. Triplet Fingerprinting: More Practical and Portable
Website Fingerprinting with N-shot Learning. In CCS ’19. ACM,
2019. DOI: 10.1145/3319535.3354217.

[72] The RLPx Transport Protocol. Version ab79935. ethereum. 2023.
URL: https://github.com/ethereum/devp2p/blob/master/
rlpx.md.

[73] Tor Metrics. The Tor Project. 2024. URL: https://metrics.
torproject.org (visited on 12/05/2024).

[74] tornettools. Version 9716a86. Shadow. 2023. URL: https://
github.com/shadow/tornettools (visited on 12/05/2024).

[75] Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson.
SoK: Towards Grounding Censorship Circumvention in Empiricism.
In S&P ’16. IEEE, 2016. DOI: 10.1109/SP.2016.59.

[76] Lindsey Tulloch and Ian Goldberg. Lox: Protecting the Social Graph
in Bridge Distribution. PoPETs, 2023(1), 2023.

[77] Ventrilo Protocol. Wireshark. 2020. URL: https : / / wiki .
wireshark.org/Ventrilo (visited on 10/30/2023).

[78] VMess protocol. Version 651b414. Project V. 2021. URL: https:
//www.v2fly.org/en_US/developer/protocols/vmess.html.

[79] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. Proteus:
Programmable Protocols for Censorship Circumvention. In FOCI

’23, 2023. eprint: https://www.petsymposium.org/foci/2023/
foci-2023-0013.php.

[80] Ryan Wails, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger
Dingledine, Rob Jansen, and Micah Sherr. Learning to Behave:
Improving Covert Channel Security with Behavior-Based Designs.
PoPETs, 2022(3), 2022. DOI: 10.56553/popets-2022-0068.

[81] Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen.
On Precisely Detecting Censorship Circumvention in Real-World
Networks. In NDSS ’24. ISOC, 2024. DOI: 10.14722/ndss.2024.
23394.

[82] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and
Thomas Shrimpton. Seeing through Network-Protocol Obfuscation.
In CCS ’15. ACM, 2015. DOI: 10.1145/2810103.2813715.

[83] Qiyan Wang, Xun Gong, Giang T.K. Nguyen, Amir Houmansadr, and
Nikita Borisov. CensorSpoofer: Asymmetric Communication using
IP Spoofing for Censorship-Resistant Web Browsing. In CCS ’12.
ACM, 2012. DOI: 10.1145/2382196.2382212.

[84] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briese-
meister, Steven Cheung, Frank Wang, and Dan Boneh. StegoTorus: A
Camouflage Proxy for the Tor Anonymity System. In CCS ’12. ACM,
2012. DOI: 10.1145/2382196.2382211.

[85] Philipp Winter, Tobias Pulls, and Juergen Fuss. ScrambleSuit: A
Polymorph Network Protocol to Circumvent Censorship. In WPES

’13. ACM, 2013. DOI: 10.1145/2517840.2517856.

[86] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter An-
derson, Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin,
and Eric Wustrow. How the Great Firewall of China Detects and
Blocks Fully Encrypted Traffic. In USENIX Security ’23. USENIX
Assn, 2023. eprint: https://www.usenix.org/conference/
usenixsecurity23/presentation/wu-mingshi.

[87] Diwen Xue, Michalis Kallitsis, Amir Houmansadr, and Roya En-
safi. Fingerprinting Obfuscated Proxy Traffic with Encapsulated TLS
Handshakes. In USENIX Security ’24. USENIX Assn, 2024. eprint:
https://www.usenix.org/conference/usenixsecurity24/
presentation/xue.

[88] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J. Alex
Halderman, Jedidiah R. Crandall, and Roya Ensafi. OpenVPN is
Open to VPN Fingerprinting. In USENIX Security ’22. USENIX
Assn, 2022. eprint: https://www.usenix.org/conference/
usenixsecurity22/presentation/xue-diwen.

17

https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://github.com/apernet/OpenGFW
https://github.com/apernet/OpenGFW
https://www.usenix.org/conference/7th-usenix-security-symposium/bro-system-detecting-network-intruders-real-time
https://www.usenix.org/conference/7th-usenix-security-symposium/bro-system-detecting-network-intruders-real-time
https://www.usenix.org/conference/7th-usenix-security-symposium/bro-system-detecting-network-intruders-real-time
https://www.usenix.org/conference/7th-usenix-security-symposium/bro-system-detecting-network-intruders-real-time
https://noiseprotocol.org/noise.pdf
https://doi.org/10.1145/2508859.2516737
https://doi.org/10.1145/2508859.2516737
https://doi.org/10.1145/3603269.3604840
https://www.usenix.org/conference/usenixsecurity23/presentation/piet
https://www.usenix.org/conference/usenixsecurity23/presentation/piet
https://www.usenix.org/conference/usenixsecurity23/presentation/piet
https://www.v2ray.com/en/
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.14722/ndss.2018.23105
https://www2.ohchr.org/english/bodies/hrcouncil/docs/17session/a.hrc.17.27_en.pdf
https://www2.ohchr.org/english/bodies/hrcouncil/docs/17session/a.hrc.17.27_en.pdf
https://github.com/libp2p/specs/blob/master/secio/README.md
https://github.com/libp2p/specs/blob/master/secio/README.md
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3319535.3354217
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://metrics.torproject.org
https://metrics.torproject.org
https://github.com/shadow/tornettools
https://github.com/shadow/tornettools
https://doi.org/10.1109/SP.2016.59
https://wiki.wireshark.org/Ventrilo
https://wiki.wireshark.org/Ventrilo
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://www.petsymposium.org/foci/2023/foci-2023-0013.php
https://www.petsymposium.org/foci/2023/foci-2023-0013.php
https://doi.org/10.56553/popets-2022-0068
https://doi.org/10.14722/ndss.2024.23394
https://doi.org/10.14722/ndss.2024.23394
https://doi.org/10.1145/2810103.2813715
https://doi.org/10.1145/2382196.2382212
https://doi.org/10.1145/2382196.2382211
https://doi.org/10.1145/2517840.2517856
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity24/presentation/xue
https://www.usenix.org/conference/usenixsecurity24/presentation/xue
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen

[89] Yawning Angel. obfs4 (The obfourscator). Protocol specification. Ver-
sion c0898c2. 2019. URL: https://github.com/Yawning/obfs4/
blob/master/doc/obfs4-spec.txt (visited on 05/13/2022).

[90] Tatu Ylonen. The Secure Shell (SSH) Transport Layer Protocol.
Edited by Chris Lonvick. (4253) in Request for Comments (RFC).
IETF. 2006. URL: https://datatracker.ietf.org/doc/html/
rfc4253.

Appendices

A Encryption Protocols

Table 8 shows 27 encryption protocols we surveyed to inform
UPGen’s design.

B Example Protocol Specification

Listing 1 shows a specification of the example protocol de-
scribed in §2.4.

C Protocol recognition on the WIDE data set

In Table 9, we show libprotoident’s, nDPI’s, and Zeek’s proto-
col recognition rates for up to the top 30 protocols recognized
by the tools.

Table 8: Encrypted protocols.

Protocol Purpose Transport Open Year Ref

ANSI C12.22 Smart grid TCP No Ca. 2011 [3]
ALTS RPC TCP No 2017 [30]
Bittorrent MSE File sharing TCP Yes 2006 [31]
CurveZMQ General TCP Yes 2013 [33]
Lightning
Transport

Cryptocur-
rency

TCP Yes Ca. 2016 [12]

MQTT IoT TCP No 2019 [5]
msgr2 File system TCP Yes Ca. 2016 [52]
RLPx Cryptocur-

rency
TCP Yes Ca. 2015 [72]

secio File sharing TCP Yes 2021 [68]
SSH 2.0 Remote

login
TCP Yes 2006 [90]

tcpcrypt General TCP Yes 2019 [10]
TLS 1.2 General TCP Yes 2008 [16]
TLS 1.3 General TCP Yes 2018 [64]
Ventrilo Telephony TCP No Ca. 2006 [77]
Noise Protocol
Family

General TCP/UDP Yes 2018 [59]

noise-libp2p File sharing TCP/UDP Yes 2019 [53]
OSCORE IoT TCP/UDP Yes 2019 [69]
CurveCP General UDP Yes 2017 [9]
DTLS 1.2 General UDP Yes 2021 [65]
GameNetworking-
Sockets

Video
Games

UDP No ? [28]

ISMACryp Multimedia UDP Yes 2006 [36]
MinimaLT General UDP Yes 2013 [60]
nQUIC General UDP Yes 2018 [32]
QUIC General UDP Yes 2017 [37]
Skype Telephony UDP No Ca. 2005 [49]
SRTP/SRTCP Multimedia UDP Yes 2004 [8]
Wireguard VPN UDP Yes 2017 [17]

18

https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4253

Table 9: libprotoident, nDPI, and Zeek protocol recognition rates for TCP flows from the WIDE data set.

libprotoident nDPI Zeek

Label Count Label Count Label Count

Total flows 205,127 Total flows 305,513 Total flows 244,039

HTTPS 123,681 60% Unknown 204,595 67% Unknown 219,212 90%
SSH 22,808 11% TLS 68,163 22% SSH 20,697 8%
HTTP 20,818 10% SSH 22,986 8% RFB 2,479 1%
SSL/TLS 11,018 5% RDP 2,940 1% SSL 949 0%
Unknown_TCP 7,749 4% VNC 2,459 1% FTP 291 0%
DNS_TCP 5,029 2% SMTP 1,380 0% PostgreSQL 196 0%
RDP 2,804 1% IMAPS 854 0% HTTP 168 0%
SMTP 2,483 1% POP3 540 0% DNS 17 0%
RFB 2,480 1% HTTP 279 0% SMTP 14 0%
IMAPS 2,241 1% PostgreSQL 195 0% RDP 8 0%
Web_Junk 1,159 1% WhatsApp 161 0% LDAP 1 0%
SMB 900 0% SMTPS 157 0%
POP3 564 0% MsSQL-TDS 118 0%
WhatsApp 294 0% ZeroMQ 75 0%
SMTP_Secure 169 0% FTPS 58 0%
BitTorrent 148 0% POPS 58 0%
WinMX 110 0% RESP 51 0%
Fliggy 109 0% MQTT 49 0%
POP3S 90 0% FTP_CONTROL 45 0%
WeChat 85 0% JRMI 42 0%
IMAP 62 0% LDAP 38 0%
FTP_Control 53 0% CiscoSkinny 36 0%
HTTP_NonStandard 46 0% HTTP.Google 31 0%
HTTP_Tunnel 39 0% AFP 23 0%
OpenVPN 35 0% DNS 20 0%
XMPPS 34 0% HTTP.Tor 19 0%
Rsync 24 0% Kafka 18 0%
Kakao 21 0% RSYNC 16 0%
TOR 12 0% HTTP.RTSP 15 0%
Invalid_Bittorrent 11 0% HTTP.Facebook 13 0%

19

Listing 1: An example of an UPGen-generated protocol in our extended Proteus protocol specification format.

1 @SEGMENT.FORMATS
2 DEFINE handshake1
3 { NAME: type ; TYPE: [u8 ; 1] },
4 { NAME: version ; TYPE: [u8 ; 1] },
5 { NAME: nonce ; TYPE: [u8 ; 12] },
6 { NAME: ephemeral_key ; TYPE: [u8 ; 115] };
7 DEFINE handshake2
8 { NAME: type ; TYPE: [u8 ; 1] },
9 { NAME: version ; TYPE: [u8 ; 1] },

10 { NAME: nonce ; TYPE: [u8 ; 12] },
11 { NAME: ephemeral_key ; TYPE: [u8 ; 115] },
12 { NAME: static_key ; TYPE: [u8 ; 115] };
13 DEFINE data
14 { NAME: type ; TYPE: [u8 ; 1] },
15 { NAME: length ; TYPE: u16 },
16 { NAME: padding_length ; TYPE: u16 },
17 { NAME: payload ; TYPE: [u8 ; length.size_of] },
18 { NAME: padding ; TYPE: [u8 ; padding_length.size_of] },
19 { NAME: msg_mac ; TYPE: [u8 ; 16] };
20 @SEGMENT.SEMANTICS
21 { FORMAT: handshake1 ; FIELD: type ; SEMANTIC: FIXED_BYTES (0x14) } ;
22 { FORMAT: handshake1 ; FIELD: version ; SEMANTIC: FIXED_BYTES (0x03) } ;
23 { FORMAT: handshake1 ; FIELD: nonce ; SEMANTIC: RANDOM (12) } ;
24 { FORMAT: handshake1 ; FIELD: ephemeral_key ; SEMANTIC: PUBKEY (PEM) } ;
25 { FORMAT: handshake2 ; FIELD: type ; SEMANTIC: FIXED_BYTES (0x14) } ;
26 { FORMAT: handshake2 ; FIELD: version ; SEMANTIC: FIXED_BYTES (0x03) } ;
27 { FORMAT: handshake2 ; FIELD: nonce ; SEMANTIC: RANDOM (12) } ;
28 { FORMAT: handshake2 ; FIELD: ephemeral_key ; SEMANTIC: PUBKEY (PEM) } ;
29 { FORMAT: handshake2 ; FIELD: static_key ; SEMANTIC: PUBKEY (PEM) } ;
30 { FORMAT: data ; FIELD: type ; SEMANTIC: FIXED_BYTES (0x15) } ;
31 { FORMAT: data ; FIELD: length ; SEMANTIC: LENGTH } ;
32 { FORMAT: data ; FIELD: padding_length ; SEMANTIC: PADDING_LENGTH } ;
33 { FORMAT: data ; FIELD: payload ; SEMANTIC: PAYLOAD } ;
34 { FORMAT: data ; FIELD: padding ; SEMANTIC: PADDING } ;
35 { FORMAT: data ; FIELD: msg_mac ; SEMANTIC: RANDOM (16) } ;
36 @SEGMENT.SEQUENCE
37 { ROLE: CLIENT ; PHASE: HANDSHAKE ; FORMAT: handshake1 } ;
38 { ROLE: SERVER ; PHASE: HANDSHAKE ; FORMAT: handshake2 } ;
39 { ROLE: CLIENT ; PHASE: DATA ; FORMAT: data } ;
40 { ROLE: SERVER ; PHASE: DATA ; FORMAT: data } ;
41 @SEGMENT.CRYPTO
42 PASSWORD = "db7f646c-8b9b-4623-a95e-7d0ac54cae91" ;
43 CIPHER = AES256GCM ;
44 ENCRYPT data FROM data
45 { PTEXT : padding_length ; CTEXT : padding_length ; MAC : NULL },
46 { PTEXT : payload ; CTEXT : payload ; MAC : NULL },
47 { PTEXT : padding ; CTEXT : padding ; MAC : NULL } ;
48 @SEGMENT.OPTIONS
49 SEPARATE_LENGTH_FIELD = false ;

20

	Introduction
	UPGen Design
	Security Goals
	System Architecture
	Threat Model and Deployment Scenarios
	Generator

	Implementation
	Security
	Confidentiality and Integrity
	Analysis of UPGen Protocols
	Experimental Security Analysis
	Data collection
	Machine learning
	Results
	Analysis

	Analysis of Unidentified Protocols

	Performance
	Laboratory Benchmarks
	Distributed-System Simulation

	Real-World Censorship
	Discussion
	Related Work
	Conclusion
	Encryption Protocols
	Example Protocol Specification
	Protocol recognition on the WIDE data set

