
High Performance Tor Experimentation from the Magic of Dynamic ELFs

Justin Tracey
University of Waterloo
j3tracey@uwaterloo.ca

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Ian Goldberg
University of Waterloo
iang@cs.uwaterloo.ca

Abstract
The Tor anonymous communication network and Bitcoin
financial transaction network are examples of security
applications with significant risk to user privacy if they
fail to perform as expected. Experimentation on private
instances of these networks is therefore a popular means
to design, develop, and test improvements before deploy-
ing them to real users. In particular, the Shadow discrete-
event network simulator is one of the most popular tools
for conducting safe and ethical Tor research. In this pa-
per, we analyze Shadow’s design and find significant per-
formance bottlenecks in its logging and work scheduling
systems stemming from its representation of simulated
processes and its use of a globally shared process names-
pace. We design, implement, and empirically evaluate
new algorithms that replace each of these components.
We find that our improvements reduce Shadow run time
by as much as 31% in synthetic benchmarks over a va-
riety of conditions, and by as much as 73% over small
and large experimental Tor networks. Our improvements
have been merged into Shadow release v1.12.0 to the
benefit of the security and privacy communities.

1 Introduction

Networked applications are a staple of modern comput-
ing environments, in nearly all domains. Applications in-
tended for security and privacy protection are no excep-
tion, as evidenced by tools such as Tor [6], which allows
for greater privacy to clients or servers over the public in-
ternet, and Bitcoin [15], which is used to provide secure
financial transactions and a public append-only ledger.

Experimentation is an important element of develop-
ing any networked application, as it allows for develop-
ers to know which components of such applications are
in need of improvement or debugging, and allows them
to test whether changes truly did improve or fix the appli-
cation as intended. Experimentation is similarly neces-
sary in research on such applications, as it is what allows
for empirical testing of relevant hypotheses. Being able
to perform experiments on networked applications that
are independent of networks actively used by end users
is often necessary, as it grants a greater amount of con-
trol over the conditions of the experiment. In the case

of programs which have inherent security and privacy
implications, it is of even greater importance to use ex-
perimentation platforms designated for testing, so as to
avoid violating the consent of parties who are assuming
privacy and security is being provided. For example, the
Tor Project has a series of strict guidelines on what con-
stitutes acceptable research methods on Tor.1 The first of
these guidelines is: Use a test Tor network whenever pos-
sible. Therefore, developing and testing experimentation
platforms for these domains is of central importance.

Conceptually, network testing platforms exist on a
spectrum of environmental realism versus environmen-
tal control: the most realistic environments are isolated
networks that are deployed on many physical machines,
while the most controlled environments are produced by
network simulators, such as ns-3.2 The deployed net-
works are extremely limited by the physically available
resources, while network simulators run simplified, rep-
resentational models of the network under study. Be-
tween the extremes on this spectrum are network emu-
lators, which run many instances of the relevant software
on a few machines—e.g., the ExperimenTor [3] and Net-
Mirage3 Tor network emulators. Such tools are able to
provide a greater level of control and are less constrained
by physical requirements than a deployed network, but
are also not as realistic in resource usage as a deployed
network or as scalable as a network simulation.

The Shadow discrete-event network simulator [10]
breaks out of the simplified realism versus control spec-
trum. While Shadow is a network simulator and there-
fore runs representations of the network stack with simu-
lated timescales independent of real world time, Shadow
also directly executes compiled application code (e.g.,
Tor or Bitcoin) instead of simplified representations of
applications. This best-of-both-worlds approach has
made Shadow one of the most popular tools for running
Tor experiments in particular [17].

In this work, we analyze Shadow’s design and execu-
tion and identify performance bottlenecks in its logging
system and its work scheduling system that stem from
its representation of simulated processes and its use of

1research.torproject.org/safetyboard.html
2www.nsnam.org
3crysp.uwaterloo.ca/software/netmirage

https://research.torproject.org/safetyboard.html
https://www.nsnam.org
https://crysp.uwaterloo.ca/software/netmirage/


a globally shared process namespace. These bottlenecks
limit the scale of experiments that can be completed in a
feasible amount of time or on given hardware, which may
lead to research conclusions being drawn from scaled-
down networks of questionable accuracy.

From our analysis, we redesigned several components
of Shadow’s implementation. First, we designed a new
thread-aware logging system that eliminates a global
lock that was previously acquired during the logging of
simulation messages, reducing lock contention and syn-
chronization overhead. Second, we developed and incor-
porated the use of a custom high-performance dynamic
loader called drow-loader to replace the standard Linux
loader. The new loader allows Shadow to load simulated
processes into independent namespaces in order to opti-
mize and improve correctness of execution and eliminate
lock contention across instances. Third, we design and
implement a dynamic load-balancing algorithm that uses
drow-loader to dynamically migrate available work tasks
to idle Shadow threads.

For each of these newly designed components, we
constructed and ran experiments to measure the impact
each incrementally had on overall performance. Our ex-
periments demonstrate a considerable improvement both
in standard synthetic benchmarks for discrete-event net-
work simulators, as well as in more pertinent simulated
Tor networks. Through experimentation, we found that
in combination, our improvements reduced Shadow run
time by as much as 31% in synthetic benchmarks over
a variety of conditions, and by as much as 73% over
small and large experimental Tor networks. All of our
improvements have been merged into Shadow release
v1.12.0 and are publicly available.4

2 Background

In this section we provide a brief overview of the de-
sign of Shadow as it existed during our Shadow design
analysis presented in Section 3 and before our improve-
ments discussed in Section 4. Previous work provides
additional background [14, Section 2.1].
Overview: Shadow is a parallel and conservative-time
discrete-event network simulator [10] that dynamically
loads applications as plugins and directly executes them
as native code. Plugins are executed in simulated pro-
cesses running on simulated hosts that communicate over
a simulated network. The types of hosts, the processes
they run, and the layout of the network that connects
them are specified in a user-supplied XML file, which we
will refer to as the configuration file. Upon initialization,
the hosts are distributed evenly across a user-specified
number of system worker threads.

4github.com/shadow/shadow

Plugin Code

Active Data
Library Data

Library Code
links to

Plugin Data 1 Plugin Data 2 Plugin Data 3

Figure 1: Shadow’s state swapping technique. Each instance of
a plugin (e.g., Tor) has its data segment’s previous state copied
into the data segment of the corresponding shared object when
executing, then copied back out when another instance exe-
cutes. All plugins link to a single instance of each library.

Dynamic Loading: Shadow hosts can run multiple sim-
ulated processes, each of which represents the Linux pro-
cess being simulated. To execute a simulated process
on a host, Shadow dynamically loads the process exe-
cutable, known as a plugin, as an ELF shared object into
memory. This is done using the standard dlopen()
function provided by libdl (part of glibc). Using features
of the LLVM compiler, these plugins have their entire
data segment stored in a known location in memory, as a
single structure (a technique known as hoisting).
Portable Threads: Once the executable plugin is loaded
for a process, an instance of a modified version of the
GNU Portable Threads (Pth) library is used to execute
the process (by calling the main() function) and any
logical threads it creates. Pth accomplishes this task by
keeping multiple stack contexts and switching between
them using setjmp() and longjmp(). All such
stacks are executed until they would block (e.g., waiting
for I/O), and then execution returns to the Shadow stack.
Function Interposition: Virtual processes run their plu-
gin executable code without explicit knowledge that they
are being loaded and run in Shadow. As a result, the
plugin code makes calls to libc functions as usual; e.g.,
to open sockets or to send and receive data to and from
other network hosts. Shadow intercepts such functions
using function interposition; e.g., in order to redirect
data over the simulated network to other simulated hosts.
Shadow intercepts a large number of functions in order
to emulate a Linux environment to the executing plugin.
State Swapping: Upon switching execution from one
simulated process to another, Shadow copies the data
segment of the previously executing process elsewhere
in memory and exchanges it with the stored segment of
the newly executing process—a procedure we call state
swapping (see Figure 1). Using this technique, multiple
instances of a process corresponding to a particular plu-
gin may be simulated, despite the dynamic loader only
allocating memory for the plugin once.
Time and Events: As a simulator, Shadow has its own
representation of time which allows control over the pro-

https://github.com/shadow/shadow


cess execution; Shadow interposes all time-related func-
tions and returns the simulated time to the calling pro-
cess. Major simulator tasks that should occur at a future
time, such as packets arriving at another host, are called
events and stored in a min-heap sorted by time. This al-
lows Shadow to execute events in order and guarantee
causality (i.e., that time only moves forward). To sup-
port parallel execution, each worker thread has its own
queue of events, and a barrier is placed on the earliest
event time that can affect the behavior of a host associ-
ated with another worker thread. The span of events that
take place between two such barriers is called a round.
Use Cases and Constraints: Although originally de-
signed to run Tor [10], Shadow is theoretically able to
run any TCP-based application with slight modifications
and constraints—the most notable being that I/O events
are polled using supported interposed functions such as
poll(), epoll(), and select(), the application
can be made not to use fork() or exec(), and the ap-
plication can be compiled as a shared object or position-
independent executable (which most applications can).
While Shadow has been used for simulating Bitcoin [14],
Tor remains Shadow’s primary use case and Shadow is
currently one of the most popular means of performing
Tor experiments [17].

3 Design Analysis

While using Shadow for Tor research, we found that
a small, 234-host experiment finished more quickly on
an four-core (eight-thread) desktop machine with eight
worker threads than on a machine in the CrySP RIPPLE
Facility5 with 80 cores (160 threads) (irrespective of the
number of Shadow worker threads). We believe this is
due to a marginally higher CPU clock speed on the desk-
top machine. Following this initial finding, we reviewed
Shadow’s architecture and identified significant limita-
tions in its design. In the remainder of this section, we
provide a summary of the major contributors to Shadow’s
poor multi-threading scalability.
GLib Message Logging: Shadow uses GLib, an open-
source library that provides common core application
building blocks for libraries and applications written
in C. While this has aided in the speed of Shadow de-
velopment, it has come at a performance cost because
GLib was not written with high-performance computing
in mind. We reviewed the source code of the GLib mes-
sage logger that is used by Shadow and found that GLib
uses a single global lock for all messages logged using
the logger. Contention on GLib’s global message lock
will significantly reduce multi-threaded performance.

5ripple.uwaterloo.ca

0 10 20 30

Simulation Time (m)

0

50

100

R
ea

l
T

im
e

(h
) original

no logging

Figure 2: We found that mes-
sage logging significantly in-
creased Shadow runtime (con-
figured to use 24 threads).

To understand how
this affected Shadow,
we ran two Tor experi-
ments with ∼700 relays
and ∼20,000 clients: in
one version we com-
mented out all GLib
logging in Shadow. As
shown in Figure 2, a
simulation configured
to run for 35 simulated
minutes took 115 hours in the original Shadow, and
only 9 hours after removing GLib logging (the main
workload starts at 20 minutes simulation time). Clearly,
Shadow could benefit from replacing GLib’s logger with
a thread-aware logger.
Loading and Running Plugins: As mentioned previ-
ously, Shadow creates multiple instances of a simulated
process from a single plugin by swapping state. How-
ever, this technique comes with some drawbacks. The
most obvious is that copying the entire state of a plugin
can be expensive, depending on the size of the data seg-
ment. Doing so every time a different simulated process
runs adds some overhead over directly running it.

Another drawback is that this state swapping tech-
nique cannot work for any shared object that was not
built using the LLVM pass that moves the entire state into
a single, movable structure. This means there is an as-
sumption made that every system library used by a simu-
lated process is effectively stateless, or that there is no ef-
fect of sharing this state between multiple simulated pro-
cesses between events. In the instances where state does
impact operation (as is the case for the OpenSSL library
used by Tor), a lock is required to ensure only one host
is using that library at any time (a workaround that does
not actually solve the underlying problem, but in practice
was found to be sufficient). As a contrived but demon-
strative example, suppose the SSL library used stored
state in the form of which cipher suite was currently be-
ing used. When there is only one process making use of
this state, it operates correctly. But when multiple simu-
lated processes, all operating from the same actual pro-
cess, attempt to use two different cipher suites, this state
would be corrupted, and the simulated behavior would
not match the behavior of the actual application.
Load Balancing: Another drawback of Shadow’s load-
ing technique is that it greatly complicates any attempts
to migrate hosts or simulated processes from one worker
thread to another. Because each thread has its own dis-
tinct copy of the plugin, each with its own associated
memory where the active state is located (which must be
contiguous with the rest of the executable in memory),
any pointer variables that store an address within the ac-
tive state would no longer point to the correct address af-

https://ripple.uwaterloo.ca/


0 10 20 30 40 50 60

Simulation Time (m)

0

20

40

R
ea

l
T

im
e

(m
)

elapsed time

thread 1-6 blocked time

Figure 3: The amount of time that each worker thread has spent
blocked compared to the total elapsed time of the experiment.

ter the state was migrated to another thread’s copy of the
plugin. Because of this, Shadow’s scheduler only assigns
hosts to worker threads once, when Shadow is preparing
the experiment. Since there is no adjustment of the ini-
tial scheduling, some worker threads will frequently run
considerably longer than most of the others before hitting
the round barrier. As such, the simulation fails to make
effective use of the multithreaded environment it runs in,
with initial tests showing some threads remaining idle
for upwards of 80% of an experiment. This effect can be
seen in Figure 3, which compares the simulation time to
the real time that each worker thread has spent idle (as
well as the total elapsed time across all threads). We see
that the same threads are finishing early throughout, and
could therefore handle more load than assigned.
Lack of Compiler Optimizations: Finally, Shadow
in its original state must be compiled with the
LLVM/Clang C compiler in order to utilize the hoist-
ing technique described earlier. More importantly, it
can only be compiled with the default set of compiler
optimizations. Attempting to set the optimizations to a
higher level causes segmentation faults during the course
of an experiment for reasons that were never fully deter-
mined by us or the Shadow developers; we believe the
problem is caused by the hoisting technique.

4 Design Improvements

In this section, we describe how we improved Shadow’s
design by developing a new thread-aware logging system
and a new custom dynamic loader. The new loader al-
lows us to load compiler-optimized virtual processes and
their dependencies into independent namespaces and uti-
lize new scheduling policies to dynamically balance load
across worker threads at runtime.
Logging: In order to reduce lock contention while log-
ging messages, we designed a new logging system and
modified Shadow to use it instead of GLib’s logger.

Our thread-aware logging system works as follows.
Each Shadow worker thread generates formatted log
messages as it executes code, and first buffers them in

Namespace 1

Plugin Data 1

Library
Data 1

links to

Namespace 2

Plugin Data 2

Library
Data 2

links to

Plugin Code

Library Code

Figure 4: Our new design. Each instance of the plugin has its
own dedicated namespace, which includes its code, data, and
linked libraries. Read-only sections such as code, however, are
mapped to the same physical memory. Contrast with Figure 1.

a thread-local message queue. Periodically or when
a simulation round ends, each Shadow worker thread
passes ownership of its message queue to a new single-
purpose logger thread using an asynchronous communi-
cation queue. There are w such communication queues
in the simulation, one to connect each of the w worker
threads to the logger thread. The logger thread receives
the w message queues through the respective communi-
cation queues, sorts the messages by time using a min-
priority heap, and then writes out all sorted messages.

Our design is more scalable than the GLib logger
since, unlike the GLib logger, it does not require any
global locks. Buffering messages locally in each worker
thread and writing all messages with a single logger
thread further reduces synchronization overhead.
Loading Independent Namespaces: We developed a
dynamic loader that we call drow-loader6 (which we
forked from elf-loader [19]) and redesigned Shadow to
use it to load and directly execute applications (see Fig-
ure 4 and contrast with Figure 1). For more details on
drow-loader, see the first author’s Master’s thesis [20].

Instead of using dlopen() to open the shared ob-
ject, we use dlmopen() to load the shared object into
its own namespace, once per instance of that plugin in the
network. Because each plugin is run in its own names-
pace, it obviates the need for state swapping. Instead,
each instance of a plugin has its own copy of the entire
executable associated with it, including code and data,
ready for execution at any time. The lack of state swap-
ping means there is less overhead from copying these
states every time a different host is run, simulated process
execution is simpler, and the build process is decoupled
from LLVM/Clang to allow for use of other compilers
and optimization levels.

In addition to the advantage of independent names-
paces, all of a plugin’s dependencies are also loaded into

6“Drow” (rhymes with “now”) are a race of shadow elves from the
game Dungeons and Dragons.



0 10 20 30 40 50 60

Simulation Time (m)

0

10

20

30

R
ea

l
T

im
e

(m
)

elapsed time

thread 1-6 blocked time

Figure 5: Amount of time each worker thread has spent blocked
over the course of an experiment when using work stealing.
Individual threads cannot be readily seen because their blocked
times are nearly identical. Contrast with Figure 3.

its instance namespace. This isolation improves upon
Shadow’s original design, where only a single instance
of each library is loaded for each worker thread, irrespec-
tive to the number of simulated processes making use of
it. We benefit from greater assurances of correct behavior
of applications by isolating each dependency’s state, and
we run Tor and OpenSSL code in parallel by removing
the now-unnecessary global lock that was used to prevent
parallel access from Tor to the OpenSSL library.

To reduce the additional memory overhead from these
independent instances, all read-only sections of the exe-
cutable make use of shared memory mappings. By do-
ing so, the code of two processes that correspond to the
same executable are backed by the same physical mem-
ory. This would occur automatically from Linux’s Copy-
on-Write memory mapping feature under normal circum-
stance, but we must do it explicitly because our dynamic
linker must modify these sections in libraries that were
linked to glibc for technical reasons [20].
Scheduling: One of the primary motivations for imple-
menting the new dynamic loader functionality was to al-
low for better scheduling policies than those that Shadow
previously supported. With the additional features pro-
vided by drow-loader, we were able to implement a
means of dynamically migrating hosts from one thread
to another to improve load balancing during execution.

The new scheduling algorithm is a form of work steal-
ing [4, 22]. Just as with Shadow’s original design, all
hosts are distributed evenly across the available worker
threads at the start of the experiment. As in Shadow’s
default scheduler, each worker thread executes every host
assigned to it, until none of the hosts has any events left
to process in this round. However, unlike in the original
scheduler, once a worker thread has finished executing all
hosts assigned to it, instead of blocking on the round bar-
rier, it queries the lists of hosts assigned to other worker
threads. If it finds there is a host on another worker thread
that has yet to begin executing this round, it will remove
the host from that list of hosts, insert it into its own, and

begin executing its events for this round. This continues
until every worker thread finds that no host has yet to be-
gin execution this round and the round barrier is reached.

In this manner, we ensure that work is evenly dis-
tributed across worker threads; as can be seen by com-
paring Figure 5 with Figure 3, no thread spends signifi-
cantly more time blocked than any other. Because hosts
are migrated only when a worker thread is otherwise idle,
we avoid much of the cost of migration and cache inval-
idation that would come with an algorithm more akin to
a thread pool, where hosts are not a priori affiliated with
any particular thread by the scheduler. This algorithm
also naturally lends itself to the changing behavior of the
simulation over time. For example, hosts that are partic-
ularly active at infrequent or irregular intervals will not
skew the work distribution in chaotic ways.

5 Performance Benchmark

The parallel hold model (PHOLD) [7] is a standard par-
allel event model that is commonly used to benchmark
discrete-event simulators. Each host in a traditional
PHOLD benchmark enqueues a new event after a time
that is usually drawn from an exponential distribution,
and the destination host for the generated event is se-
lected uniformly at random from all connected hosts.
As a result, many performance studies that use PHOLD
to evaluate symmetric networks lead to well-balanced
workloads across hosts and are not closely representa-
tive of real-world networks [5]. Therefore, we use a vari-
ation on the standard PHOLD benchmark in our evalu-
ation since we expect uneven workloads across Shadow
hosts in practical use cases (e.g., Tor).
Setup: We write a benchmark application as a Shadow
plugin. In our benchmark experiments, we configure a
number of threads t, a number of hosts h, and a mes-
sage load m. Each host starts a simulation by sending
m messages to the other hosts, where the choice of the
destination host is made according to a globally defined
set of weights that are sampled from a Pareto distribu-
tion. Whenever any host receives a message, it generates
a new message whose destination host is chosen accord-
ing to the same set of globally defined weights. The t, h,
and m parameters allow us to adjust the per-thread event
density in Shadow, while the weights and the message re-
ply logic ensure unbalanced workloads across hosts. We
configure each experiment to run for 60 simulated sec-
onds, and we track the real time to run each simulation.

We run our benchmark across a range of parameters
with each of the logging, loading, and scheduling im-
provements (see Section 4) as they were cumulatively
added to the original Shadow (in the respective order),
and we repeat each experiment on three distinct ma-
chines with identical hardware profiles. The application



10 250 500 750

Number of Messages Per Host

0

20

40

60

80

100

120

R
ea

l
T

im
e

R
el

at
iv

e
to

O
ri

gi
na

l
(%

)

original

logging

loading

scheduling

(a) Messages m

500 1000 1500 2000

Number of Hosts

0

20

40

60

80

100

R
ea

l
T

im
e

R
el

at
iv

e
to

O
ri

gi
na

l
(%

)

original

logging

loading

scheduling

(b) Hosts h

4 8 12 16 24 32

Number of Threads

0

25

50

75

100

125

R
ea

l
T

im
e

R
el

at
iv

e
to

O
ri

gi
na

l
(%

)

original

logging

loading

scheduling

(c) Threads t
Figure 6: Real time to complete our variation of the PHOLD benchmark experiments relative to the original Shadow version (with
95% confidence intervals) while varying the number of messages m in Figure 6a, the number of hosts h in Figure 6b, and the number
of threads t in Figure 6c. The default values for the parameters not presented in each figure are: m = 250, h = 1000, and t = 16.

logic in the benchmark is minimal by design: the bench-
mark is meant to test the performance of the simula-
tion engine in isolation and avoid any complexities intro-
duced by the logic of applications being run in Shadow.
While our benchmark allows us to better understand how
our design changes affect performance in general, note
that we also evaluate performance while running a pri-
vate Tor network as a practical case study in Section 6.
Results: Figure 6 shows the benchmark performance
of our improvements, relative to the performance of the
original Shadow design, with 95% confidence intervals.

We find that our improvements reduce the real time
to complete experiments relative to original similarly
across the tested message parameter settings (Figure 6a),
which is intuitive since an increase in simulation work-
load should equally affect each Shadow version. Increas-
ing the number of hosts (Figure 6b) also has the effect
of increasing the total number of messages (i.e., work-
load), and we observed a similar performance effect as
expected. Varying the number of threads (Figure 6c)
also shows similar results for all but scheduling, which
showed a 31% performance increase with 4 threads (the
best we measured) but a 22% performance decrease with
32 threads. We hypothesize that our scheduling improve-
ment performed worse than the others because the over-
head associated with migrating hosts to different threads
was greater than any gain obtained from parallel execu-
tion: it is faster to run a host than migrate it because the
computation in the benchmark plugin is minimal. This is
not the case in more realistic applications (e.g., Tor), as
we shall see in Section 6.

We find that logging and loading both significantly re-
duce the real time to complete experiments relative to
original across all parameter settings. We observed no
case that logging reduced performance, and in most cases
saw an improvement of about 15%. Similarly, we ob-
served that loading always outperforms logging, and that
loading reduces real time by about 25% relative to origi-
nal across parameter settings (and 29% in the best case).

6 Case Study: Tor

We now evaluate the performance of our Shadow im-
provements in both small- and large-scale Tor networks.
Small-scale Tor Network: One important use of Tor
simulation is the testing of changes to the Tor code it-
self. These tests may be for basic correctness and per-
formance consistency checks in order to ensure that such
changes do not have unintended consequences. Such test
networks will generally be smaller, and able to run on
typical laptops at simulation rates that should match or
exceed real time for fast turnaround of results. Here,
we show the performance and memory impact of our
changes on such networks.

The network was originally constructed such that one
hour of simulation time took approximately one hour of
real time in an older version of Shadow. It simulates one
hour of simulation time for 268 hosts: 20 web servers,
18 Tor relays, and 230 Tor clients. Each client uses one
of the preconfigured traffic behaviors that comes with
the Shadow Tor plugin, designed to simulate web brows-
ing, bulk file downloading, etc. To be clear, this network
is only intended to represent the aforementioned consis-
tency tests, and not any rigorous experimentation repre-
sentative of the live Tor network.

The first 30 minutes of simulation time is designated
for bootstrapping the network, during which each of the
Tor directory authorities, relays, and clients start their
simulated Tor process and clients start their file down-
loading processes. The start of each such process is dis-
tributed over time to avoid overloading the directory au-
thorities, which are contacted by every Tor process as it
starts. We consider that the network is in a ready state
starting at simulated minute 30.

As in Section 5, we run the original version of Shadow
as well as a version where each of the logging, load-
ing, and scheduling improvements (see Section 4) were
cumulatively added to Shadow (in the respective order).
Each Shadow version was run by varying the number of



2 4 6 8 10 12 14 16

Number of Threads

0

100

200

300

400

R
ea

l
T

im
e

(m
in

ut
es

)

original

logging

loading

scheduling

(a) Threads vs. Real Time

0 2 4 6 8 10 12 14 16

Number of Threads

0

50

100

150

200

R
ea

l
T

im
e

R
el

at
iv

e
to

O
ri

gi
na

l
(%

)

original

logging

loading

scheduling

(b) Threads vs. Real Time (Fraction)

00:00:00 00:16:40 00:33:20 00:50:00

Simulation Time (hh:mm:ss)

0

25

50

75

100

125

150

R
ea

l
T

im
e

(m
in

ut
es

)

original

logging

loading

scheduling

(c) Simulation Time vs. Real Time

Figure 7: Results from the small-scale Tor network with 268 hosts. Figure 7a shows the amount of time to complete the experiment
on a varying number of threads. Figure 7b shows the same results, normalized to the original performance. Figure 7c shows the
progression of a single run using 12 worker threads. The loading and scheduling lines are almost coincident on each of the plots.

00:00:00 00:16:40 00:33:20 00:50:00

Simulation Time (hh:mm:ss)

0

10

20

30

40

50

60

R
ea

l
T

im
e

(h
ou

rs
)

original

logging

loading

scheduling

Figure 8: Amount of real time to reach a given simulation time,
from the large-scale Tor network with 22,499 hosts. The log-
ging and scheduling lines are almost coincident.

threads from 1 to 16, once on each of six machines with
identical hardware specifications. The results are shown
in Figure 7 with 95% confidence intervals.

As shown in Figure 7, our improvements significantly
reduce the real time to complete the small-scale experi-
ments. While the logging improvement alone improves
performance by up to 30%, we measured the largest
improvement of up to 73% from both the loading and
scheduling versions. Based on these results, we found
that the incremental improvement of scheduling over
loading is insignificant in small-scale Tor networks.
Large-scale Tor Network: The other major use of Tor
simulation is for testing design changes and research
questions, where using networks that scale as closely
as possible to the real, deployed Tor network is desir-
able. Towards that end, we measure the performance of
a larger Tor network designed to accurately represent the
performance characteristics of the real Tor network, es-
tablishing greater feasibility of running such experiments
in an acceptable amount of time and memory overhead.

Our large Tor experiment consists of 22,499 hosts, in-
cluding 1,500 web servers, 699 Tor relays, and 20,300
clients. We configure the experiment to run for 60 sim-
ulated minutes, where bootstrapping occurs during the

first 30 minutes as in the small-scale experiments. The
experiment was run for 65 hours of real time, at which
point the progress was measured.

The results in Figure 8 show that our improvements
significantly reduce the real time to run the large-scale
Tor experiments. As in our benchmark experiments, even
logging alone increases performance and loading pro-
vides a larger improvement than scheduling, though here
only slightly.

7 Related Work

We focus our discussion in this section on related Tor
research and development, as that is Shadow’s primary
use case. In Tor’s early years, experimentation was
done using single-use simulators that were written to
analyze Tor performance when changing some specific
part of Tor’s design, such as adding a relay incentive
scheme [11, 16]. Recognizing a need for a more gen-
eral yet safe approach for conducting Tor research, Bauer
et al. developed the ExperimenTor emulation testbed [3]
and Jansen and Hopper developed the Shadow discrete-
event network simulator [10]. Models of the Tor net-
work that were useful for conducting Tor experiments
with both ExperimenTor and Shadow were also devel-
oped soon thereafter [8]. Previous work has surveyed a
more complete list of Tor experimentation tools [17].

Since these tools were developed, they have been used
in a wide range of research analyzing Tor. Some of
that work includes new path selection algorithms [23],
changes to traffic scheduling [9] and load balancing [1,
13], and an analysis of denial-of-service attacks [12]. We
refer the reader to previous work for a more complete
survey of Tor research [2], much of which has experi-
mented with Tor in some way.

The design of ExperimenTor and Shadow have
changed over the years. SNEAC improves upon the per-
formance of ExperimenTor by using Linux Containers



and the kernel’s network emulation module netem [18],
while NetMirage3 improves upon SNEAC with more ef-
ficient tooling and improvements to the network rep-
resentation. Shadow was enhanced to support impor-
tant TCP features [9] as well as running processes that
use multiple threads (a requirement for running Bit-
coin) [14]. Our work adds performance enhancements
to Shadow to further improve its utility.

Ns-32 is a related network simulator that has previ-
ously been used for Tor research in its normal mode of
operation (i.e., abstract simulation) [21], but it focuses
more on network protocol accuracy than scalability. Its
direct code execution (DCE) mode of operation [19] is
more closely comparable to Shadow; however, it has not
been shown to directly execute Tor (as Shadow does) and
we found significant performance issues in the loader
used in DCE mode that we believe makes experiments
larger than a few hundred hosts impractical.

8 Conclusion

In this work, we identified performance issues in the
Shadow simulator and designed new logging, dynamic
loading, and scheduling algorithms to overcome these
issues. We have empirically demonstrated the perfor-
mance benefits of each of our algorithms as they were cu-
mulatively added to Shadow using parallel discrete-event
simulation benchmarks and a more pertinent case study
of the Tor network. In addition to showing significant
performance benefits for Shadow experiments, we also
eliminate correctness errors that were previously caused
by plugins sharing a single global process namespace.

Acknowledgments

This work has been partially supported by the Office of
Naval Research, by the National Science Foundation un-
der grant number CNS-1527401, and by NSERC under
grant number STPGP-463324. The views expressed in
this work are strictly those of the authors and do not nec-
essarily reflect the official policy or position of any em-
ployer or funding agency. This work benefited from the
use of the CrySP RIPPLE Facility at the University of
Waterloo.

References
[1] ALSABAH, M., BAUER, K., ELAHI, T., AND GOLDBERG, I.

The path less travelled: Overcoming Tor’s bottlenecks with traffic
splitting. In Privacy Enhancing Technologies Symposium (PETS)
(2013).

[2] ALSABAH, M., AND GOLDBERG, I. Performance and secu-
rity improvements for Tor: A survey. ACM Computing Surveys
(CSUR) 49, 2 (2016), 32.

[3] BAUER, K., SHERR, M., MCCOY, D., AND GRUNWALD, D.
ExperimenTor: A Testbed for Safe and Realistic Tor Experimen-

tation. In USENIX Workshop on Cyber Security Experimentation
and Test (CSET) (2011).

[4] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling mul-
tithreaded computations by work stealing. J. ACM 46, 5 (Sept.
1999), 720–748.

[5] BONNET, V. Benchmarking parallel discrete event simulations.
Master’s thesis, Utrecht University, 2017.

[6] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Security Sympo-
sium (USENIX) (2004).

[7] FUJIMOTO, R. M. Performance of time warp under synthetic
workloads. In SCS Multiconference on Distributed Simulation
(1990).

[8] JANSEN, R., BAUER, K., HOPPER, N., AND DINGLEDINE, R.
Methodically modeling the Tor network. In USENIX Workshop
on Cyber Security Experimentation and Test (CSET) (2012).

[9] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. Never Been KIST: Tor’s Congestion Man-
agement Blossoms with Kernel-Informed Socket Transport. In
USENIX Security Symposium (USENIX) (2014).

[10] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a box
for accurate and efficient experimentation. In Network and Dis-
tributed System Security Symposium (NDSS) (2012). See also:
https://shadow.github.io.

[11] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting new Tor re-
lays with BRAIDS. In ACM Conference on Computer and Com-
munications Security (CCS) (2010).

[12] JANSEN, R., TSCHORSCH, F., JOHNSON, A., AND SCHEUER-
MANN, B. The Sniper Attack: Anonymously Deanonymizing
and Disabling the Tor Network. In Network and Distributed Sys-
tem Security Symposium (NDSS) (2014).

[13] JOHNSON, A., JANSEN, R., HOPPER, N., SEGAL, A., AND
SYVERSON, P. PeerFlow: Secure load balancing in Tor. Pro-
ceedings on Privacy Enhancing Technologies 2017, 2 (2017), 74–
94.

[14] MILLER, A., AND JANSEN, R. Shadow-Bitcoin: Scalable sim-
ulation via direct execution of multi-threaded applications. In
USENIX Workshop on Cyber Security Experimentation and Test
(CSET) (2015).

[15] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. http://bitcoin.org/bitcoin.pdf, 2008.

[16] NGAN, T.-W. J., DINGLEDINE, R., AND WALLACH, D. S.
Building Incentives into Tor. In Financial Cryptography and
Data Security (FC) (2010).

[17] SHIRAZI, F., GOEHRING, M., AND DIAZ, C. Tor experimen-
tation tools. In International Workshop on Privacy Engineering
(IWPE) (2015).

[18] SINGH, S. Large-scale emulation of anonymous communication
networks. Master’s thesis, University of Waterloo, 2014.

[19] TAZAKI, H., UARBANI, F., MANCINI, E., LACAGE, M., CA-
MARA, D., TURLETTI, T., AND DABBOUS, W. Direct code
execution: Revisiting library os architecture for reproducible net-
work experiments. In Proceedings of the Ninth ACM Conference
on Emerging Networking Experiments and Technologies (2013).

[20] TRACEY, J. Building a Better Tor Experimentation Platform
from the Magic of Dynamic ELFs. Master’s thesis, University
of Waterloo, 2017. https://hdl.handle.net/10012/12602.

[21] TSCHORSCH, F., AND SCHEUERMANN, B. Mind the gap: To-
wards a backpressure-based transport protocol for the Tor net-
work. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2016).

[22] VANDEVOORDE, M. T., AND ROBERTS, E. S. Workcrews: An
abstraction for controlling parallelism. International Journal of
Parallel Programming 17, 4 (1988), 347–366.

[23] WACEK, C., TAN, H., BAUER, K., AND SHERR, M. An em-
pirical evaluation of relay selection in Tor. In Network and Dis-
tributed System Security Symposium (NDSS) (2013).

https://shadow.github.io
http://bitcoin.org/bitcoin.pdf
https://hdl.handle.net/10012/12602

	Introduction
	Background
	Design Analysis
	Design Improvements
	Performance Benchmark
	Case Study: Tor
	Related Work
	Conclusion

