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Abstract

Tor is a large and popular overlay network providing both anonymity to its users and a platform for
anonymous communication research. New design proposals and attacks on the system are challenging
to test in the live network because of deployment issues and the risk of invading users’ privacy, while
alternative Tor experimentation techniques are limited in scale, are inaccurate, or create results that are
difficult to reproduce or verify. We present the design and implementation of Shadow, an architecture
for efficiently running accurate Tor experiments on a single machine. We validate Shadow’s accuracy
with a private Tor deployment on PlanetLab and a comparison to live network performance statistics. To
demonstrate Shadow’s powerful capabilities, we investigate circuit scheduling and find that the EWMA
circuit scheduler reduces aggregate client performance under certain loads when deployed to the entire
Tor network. Our software is open source and available for download.

1 Introduction
Tor [8] is the most popular application providing anonymity for privacy-conscious Internet users. To

achieve anonymity for its clients, Tor forwards communication between sources and destinations through
a tunneled circuit of several volunteer relays located around the world. Data is encrypted using Onion
Routing [11, 37] so that no single relay in the circuit can learn both the true source and the true destination
of any forwarded message.

Tor’s goal to provide low-latency anonymity for its clients has led to an enormous amount of research
on topics including, but not limited to, anonymity attacks and defenses [3, 9, 13, 24, 32], system design,
performance, and scalability improvements [2, 36, 40, 42, 47], and the economics of volunteering relays
to the Tor network [1, 15, 28]. Most Tor research – whether implementing a new design approach or
analyzing a potential attack – either requires or would benefit from access to the live Tor network and the
data it generates. However, such access might invade clients’ privacy or be infeasible to provide – testing
a small design change in the real network requires propagating that change either to hundreds of thousands
of Tor clients or to thousands of volunteer relays, and in some cases, both. Therefore researchers often use
alternative strategies to experiment and test new research proposals.
Tor Experimentation. One approach for experimenting with Tor outside of the live public network is to
configure a parallel live-but-private test network deployment [3, 42] either using machines at a university or
a platform such as PlanetLab [7]. Since live deployments run real software over real hardware, the results are
generally accepted. However, PlanetLab and other private deployments do not accurately reflect the same
network conditions of the public Tor network, are difficult to manage, and do not scale well – PlanetLab
has only around one thousand nodes of which roughly half are usable at any time. Therefore researchers

∗Work partially performed at the University of Minnesota and the U.S. Naval Research Laboratory
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often experiment through simulation [15, 25, 28, 33]. Simulating particular Tor mechanisms may increase
scalability, but also harms accuracy: the Tor software and protocols are continuously updated by several Tor
developers, causing simulators to become outdated and unmaintained. Moreover, since simulators tend not
to be reused, the results of one group may be inconsistent with or can not be verified by other groups.
Tor in a Box. To increase consistency, accuracy, and scalability of Tor experiments, we design and develop
a new and unique simulation architecture called Shadow. Shadow allows us to run a private Tor network on
a single machine while controlling all aspects of an experiment. Results are repeatable and easily verifiable
through independent analysis. Although Shadow simulates the network layer, it links to and runs real Tor
software, allowing us to experiment with new designs by implementing them directly into the Tor source
code. This strategy expedites the process of incorporating proposals into Tor since software patches can be
submitted to the developers. Shadow is capable of simulating a large and diverse private Tor network, requir-
ing little to no modification to the numerous supported Tor software versions. Shadow’s focus on usability
and commitment to open source software1 improves accessibility and promotes community adoption.

Shadow is a discrete-event simulator that utilizes techniques allowing it to run real applications in a
simulation environment. Real applications are encapsulated in a plug-in wrapper that contains functions
necessary to allow Shadow to interact with the application. Although the application is only loaded into
memory once, the plug-in registers memory addresses for all variable application state and Shadow manages
a copy of these memory regions for each node in the simulation. Similar to a kernel context switch, Shadow
swaps in the current node’s version of this state before passing control to the application, and swaps out the
state when control returns. Function interposition allows Shadow to intercept function calls, e.g. socket and
event library calls, and redirect them to a simulated counterpart. As detailed in Section 3, we run Tor using
these techniques, as well as symbol table manipulations, without modifying the source code.
Accurate Simulation. We validate Shadow’s accuracy against a 402-node deployment of a private Tor
network on PlanetLab. We find that our results are within reason although PlanetLab exhibits highly variable
behaviors because of overloaded CPUs caused by co-location and resource sharing. To validate Shadow’s
ability to accurately and consistently represent the live Tor network, we simulate a 1051-node topology
with bandwidth and relay characteristics taken from live Tor and network latency taken from PlanetLab
measurements. We find that client performance in Shadow closely matches live statistics gathered by the
Tor Project [45], with download time quartiles within 15 percent of the live statistics for various download
sizes. Our results in Section 5 indicate that Shadow can accurately measure Tor client performance.
Improving Client Performance. Tor’s popularity has lead to network congestion and performance prob-
lems. Tor’s hundreds of thousands of clients [20] send data over a few thousand bandwidth limited relays,
causing network bottlenecks that impair client performance. Using Shadow, we investigate scheduling as a
technique to improve client performance. In Section 6 we explore the EWMA circuit scheduler [42] which
prioritizes bursty circuits ahead of bulk circuits. We confirm previous results by re-evaluating EWMA when
enabled on small bottleneck topologies consisting of three relays – similar to those tested by Tang and Gold-
berg. However, our results from a network-wide deployment of the scheduler in a scaled topology indicate
that performance benefits are highly dependent on network load and a properly tuned half-life. We found
that the scheduler actually reduces performance for Tor clients under certain network loads, a significant
result since the EWMA scheduler is currently enabled by default for all sufficiently updated Tor relays.

2 Requirements
Accurate Simulations. In order to produce results that are consistent and representative of the live Tor
network, Shadow should run a minimally-modified version of the native Tor software. Running the Tor
software in our simulator will ensure that Tor’s behavior in our simulated Tor network will closely represent
the behavior of Tor running on a real machine in the live network.

1Shadow source code is publicly available under a GPLv3 license [38, 39].
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In addition to running the Tor software, Shadow should also have accurate models of system-level in-
teractions. Tor is mostly concerned with buffering, encrypting/decrypting cells, and sending and receiving
large amounts of network traffic with non-blocking I/O. Inaccurate models of these mechanisms would lead
to inaccurate results and measurements of Tor’s behavior. Therefore, we are required to model the system-
level network stack of an operating system by simulating TCP and UDP, correctly managing network-level
buffers and buffer sizes, and simulating non-blocking event-driven I/O. Since a large amount of Tor’s run-
time is spent performing cryptography and processing data, Shadow should avoid execution of expensive
cryptographic operations while instead modeling the CPU delays that would have occurred had the cryptog-
raphy actually been performed.

Finally, accurate software and an accurate system will not function correctly without an accurate net-
work. First, Shadow requires models for network characteristics including latency and reliability of network
links, complex AS-level topologies, and upstream/downstream capacities for end-hosts. Second, Shadow
must accurately model the network characteristics of Tor, including relay-contributed bandwidth, faith-
ful bandwidth distributions among entry, middle, and exit relays, and geographical distribution of relays.
Shadow must also incorporate network traffic from Tor clients and model accurate distributions of that traf-
fic from live Tor traffic patterns.
Usability and Accessibility. A simulator that produces accurate results characteristic of the live Tor network
will be of little use to the community without a usable simulation framework. Shadow should therefore do
the following to increase usability and promote community adoption.

First, Shadow should be simple to obtain, build, and configure to allow for rapid deployment. Users
should be able to run a simulation with minimal overhead and little or no configuration. However, advanced
users should be able to easily modify a simulation, generate new topologies, and configure network and
system parameters. Simulation results should be easy to gather and parse to produce visualizations that allow
the analysis of the network state. Second, Shadow should run completely as a user-level process on a single
machine with inexpensive hardware to minimize overhead costs associated with obtaining, configuring, and
managing multiple machines or clusters. Shadow should be accessible to anyone worldwide so results can
be easily compared.

3 Design
Shadow is a discrete event simulator that can run real applications as plug-ins while requiring minimal

modifications to the application. Plug-ins containing applications link to Shadow libraries and Shadow
dynamically loads and natively executes the application code while simulating the network communication
layer. An overview of Shadow’s design is depicted in Figure 1 and details about Shadow’s core simulation
engine [10] are given in Appendix A.

Shadow dynamically loads plug-ins and instantiates virtual nodes as specified in a simulation script.
Communication between Shadow and the plug-in is done through a well-defined callback interface imple-
mented by the plug-in. When the appropriate callback is executed, the plug-in may instantiate and run its
non-blocking application(s). The application will cause events to be spooled to the scheduler by executing a
system call that is intercepted by Shadow and redirected to a function in the node library. The interceptions
allow integration of the application into the simulation environment without requiring modification of ap-
plication code. Virtual nodes communicate with each other through a virtual network which spools packet
and other network related events to the scheduler. Each virtual node stores only application-specific state
and loads/unloads the state as necessary during simulation execution. We now describe the main architec-
tural components that enable Shadow to realize the above functionality and fulfill our design requirements
discussed in the previous section.
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3.1 Simulation Script
Each simulation is bootstrapped with a simulation script written in a custom scripting language. This

script gives the user access to commands that allow Shadow to dynamically load multiple plug-ins, create
and connect networks, and create nodes. Valid plug-ins are loaded by supplying a filepath while parameters
such as latency, upstream and downstream bandwidth, and CPU speed are specified by either loading a
properly formatted CDF data file or generating a CDF using a built-in CDF generator. Hostnames may be
specified for each node and are otherwise automatically generated to facilitate support for a Shadow name
service. The script also specifies which plug-in to run and when to start each node.

Events are extracted from a properly formatted simulation script and spooled to the event scheduler
using the times specified with each command. After the script is parsed, the simulation begins by executing
the first extracted event and runs until either there are no events remaining in the scheduler or the end time
specified in the script is reached. Each node creation event triggers the allocation of a virtual node and its
network and culminates in a callback to the specified Shadow plug-in for application instantiation.

3.2 Shadow Plug-ins
A Shadow plug-in is an independent library that contains

Figure 1: Shadow’s architectural design. Us-
ing a plug-in wrapper, real-world applications
are integrated into Shadow as virtual nodes
while system and library calls are intercepted
and replaced with Shadow-specific implemen-
tations.

applications the user wishes to simulate and a wrapper around
these applications allowing integration with the Shadow sim-
ulation environment. Each Shadow plug-in wrapper imple-
ments the plug-in interface – a set of callbacks that Shadow
uses to communicate with the plug-in. Plug-ins may also link
to a special Shadow plug-in utility libraries to, e.g. obtain an
IP address or log messages.
Application. To run in Shadow, an application must be asyn-
chronous, i.e. non-blocking, to prevent simulator deadlocks
during the execution of application code. We note that asyn-
chronicity may be achieved with a small amount of code in the
plug-in wrapper that utilizes the built-in Shadow callbacks or
by writing the application using the libevent-2.0 asyn-
chronous event library [17], as Shadow already supports stan-
dard usage of this library.

Next, the application must be run as a single process and in
a single thread. Child processes or threads forked or spawned
by an application will not be properly contained in the simulation environment and are therefore currently
unsupported. In most cases forking or spawning children will lead to undefined behavior or undesirable
results. We note that most multi-threaded applications have a single-threaded mode and the difficulty in
porting those that do not is application-specific.

Finally, the plug-in must register all variable application state with Shadow to facilitate multiple virtual
nodes running the same application. Plug-ins fulfill this requirement by passing pointers to node-specific
allocated memory chunks and their sizes to a Shadow library function. Therefore each variable must be
globally visible during the registration process. However, we note that a plug-in may use standard tools
to scan and globalize symbols present in the binary after the linking process. As in our Tor plug-in, this
technique may be used to dynamically generate variable registration code and eliminates the requirement of
modifying variable definitions inside the application.
Shadow Callbacks. The Shadow plug-in interface allows Shadow not only to notify the plug-in when it
should allocate and deallocate resources for running the application(s) contained in the plug-in, but also
to notify the plug-in when it may perform network I/O (reading and writing) on a file descriptor without
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blocking. The I/O callbacks are crucial for asynchronicity as they trigger application code execution and
prevent applications from the need for polling a file descriptor. The Shadow plug-in library also offers
support for a generic timer callback so plug-ins may create additional events throughout a simulation. Note
that callbacks may also originate from the virtual event library, as described in Section 3.3.2 below, if the
application uses the libevent-2.0 library.
3.3 Virtual Nodes

In Shadow, a virtual node represents a single simulated host. A virtual node contains all state that is
specific to a host, such as addressing and network information that allows it to communicate with other
hosts in the network. Virtual nodes also contain Shadow-specific implementations of system libraries that
promote homogeneity between existing interfaces. Function interposition allows for seamless integration of
applications into Shadow by redirecting calls to system functions to our Shadow implementation. Virtual
nodes also store their own application-specific state and are responsible for swapping this state into the
plug-in’s address space before passing control of code execution to the plug-in.

3.3.1 Virtual Network
In Shadow, the virtual network is the main interface through which virtual nodes may communicate.

Upon creation, each node’s virtual network interface is assigned an IP address and receives upstream and
downstream bandwidth rates as configured in the simulation script. Each virtual network contains a transport
agent that implements a leaky bucket (i.e. token bucket) algorithm that allows small traffic bursts but ensures
average data rates conform to the configured rate. The transport agent handles both incoming and outgoing
packets, allowing for asymmetric bandwidth specifications. The agent provides traffic policing by dropping
(and causing retransmission of) all non-conforming packets. Conforming incoming packets are passed to
the virtual socket library (discussed below) for processing, while events are created for conforming outgoing
packets and spooled to the scheduler for delivery to another node after incorporating network latency.

3.3.2 Node Libraries
Each virtual node implements several system functions as well as network, event, and cryptography li-

braries. Function interposition is used to redirect standard system and library functions calls made from
the application to their Shadow-specific counterparts. Function interposition is achieved by creating a
preloaded library with functions of the same name as the target functions, and setting the environment
variable LD PRELOAD to the path of the preload library. Every time a function is called, the preload library
is first checked. If it contains the function, the preloaded function is called – otherwise the standard lookup
mechanisms are used to find the function. No additional modifications are required to hook into Shadow.
Virtual System. The virtual system library implements standard system calls whose results must be modi-
fied due to the simulation environment. Functions for obtaining system time are implemented to return the
simulation time rather than the wall time and functions for obtaining hostname and address information are
intercepted to return the hostnames as defined in the simulation script configured by the user.

The virtual system also contains a virtual CPU module in an attempt to consider processing delays
produced by an application. Using a virtual CPU and processing delays improves Shadow’s accuracy since
without it, all data is processed by the application at a single discrete instant in the simulation. When a
virtual node reads or writes data between the application and Shadow, the virtual CPU produces a delay for
processing that data. This delay is “absorbed” by the system by delaying the execution of every event that
has already been scheduled for that virtual node. As virtual nodes read and write more data, the wait time
until the next event increases.

We determine appropriate CPU processing speeds as follows. First, throughput is configured for each
virtual CPU – the number of bytes the CPU can process per second. Modeling the speed of a target CPU is
done by running an OpenSSL [31] speed test on a real CPU of that type. This provides us with the raw CPU
processing rate, but we are also interested in the processing speed of an application. By running application
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benchmarks on the same CPU as the OpenSSL speed test, we can derive a ratio of CPU speed to application
processing speed. The virtual CPU module converts these speeds to a time per-byte-processed and delays
its events appropriately.
Virtual Sockets. The Shadow virtual socket library, the heart of the node libraries, implements the most
significant and crucial features for a Shadow simulation. The virtual socket library implements all system
socket functionality which includes: creating, opening, and closing sockets; sending, buffering, and receiv-
ing data; network protocols like the User Datagram Protocol (UDP) [34] and the Transmission Control
Protocol (TCP) [35]; and other socket-level functionalities. Shadow’s tight integration of socket functional-
ities and strong adherence to the RFC specifications results in an extremely accurate network layer as we’ll
show in Section 5.

Shadow intercepts and redirects functions from the system socket interface to the Shadow-specific virtual
socket library implementation. When the application sends data to the virtual socket library, the data is
packaged into packet objects. The packaging process copies the user data only twice throughout the lifetime
of the packet, meaning the same packet object is shared among nodes. Only pointers to the packet are copied
as the packet travels through various socket and network buffers, although buffer sizes are computed using
the full packet size.

Our virtual socket libraries implement socket-level buffering, data retransmission, congestion and flow
control mechanisms, acknowledgments, and TCP auto-tuning. TCP auto-tuning is required to correctly
match buffer sizes to connection speeds since neither high bandwidth connections with small network buffers
nor low-bandwidth connections with large network buffers will achieve the expected performance. TCP
auto-tuning allows network buffers to be dynamically computed on a per-connection basis, allowing for
highly accurate transfer rates even when endpoints have asymmetric bandwidth.
Virtual Events. Shadow supports the use of libevent-2.0 [17] to facilitate asynchronous applications
while easing application integration. While applications are not required to use libevent-2.0, doing so
will likely reduce the complexity of the integration process. Shadow intercepts and redirects functions from
the libevent-2.0 interface to the Shadow-specific virtual event library implementation. The virtual
event library consists of two main components: an event manager and a virtual I/O monitor. The event
manager creates and tracks events and executes event callbacks while the I/O monitor tracks the state of
Shadow buffers, informing the manager when a state change may require an event callback to fire for a
given file descriptor.
Virtual Cryptography. Simulating an application that per-
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Figure 2: Simulation vs. wall clock time.
Skipping expensive cryptographic operations
results in a linear decrease in experiment run-
time – nearly a one-third reduction in runtime
for a small, 550-node Tor experiment.

forms cryptography offers a chance for reducing simulation
runtime. As data is passed from virtual node to virtual node
during the simulation, in most cases it is not important that
the data is encrypted: since we are not sending data out across
a real network, confidentiality is not necessarily required. There-
fore, applications need not perform expensive encryption and
decryption operations during the simulation, saving CPU cy-
cles on our simulation host machine.

Shadow removes cryptographic processing by preloading
the main OpenSSL [31] functions used for data encryption.
The AES encrypt and AES decrypt functions are used
for bulk data encryption and the EVP Cipher function is
used to secure data on SSL/TLS connections. These func-
tions only perform the low-level cipher operations: all other
supporting cryptographic functionality is unmodified. When preloading these functions, Shadow will not
perform the cipher operation during encryption and decryption. Figure 2 shows the time savings Shadow re-
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alizes using this technique with the Scallion plug-in (discussed below in Section 4) for various Tor network
sizes. Larger savings in real running time are realized as experiment size increases.

3.3.3 Stored State

Multiple virtual nodes may run the same plug-in. Rather than duplicating the entire plug-in in memory
for each virtual node, Shadow only duplicates the variable state – the state of an application that will change
during execution. Registration of this variable state with Shadow happens once for each plug-in. The plug-in
registration procedure allows Shadow to determine which memory regions (beginning address and length)
in the current address space will be modified by each virtual node running the plug-in.

Following registration, Shadow possesses pointers to each memory region that may be changed by the
plug-in or application. Multiple nodes for each plug-in are supported by allocating node-specific storage for
each registered memory region and maintaining a copy of each plug-in’s state. For transparency, Shadow
loads a node’s state before every context switch from Shadow to the plug-in, and saves state back to storage
when the context switches back to Shadow. This process minimizes the total memory consumption of each
plug-in, and results in significant memory savings for large simulations and large applications.

4 The Scallion Plug-in: Running Tor in Shadow
Shadow was designed especially for running simulations using the Tor application. Therefore, Shadow

design choices were made in support of “Scallion”2, a Tor plug-in implementation. Each virtual node
running the Scallion plug-in represents a small piece of the Tor network. Since Shadow supports most
functionality needed by Scallion, the plug-in implementation itself is minimal. Here we describe some of
the specific components necessary for the Tor application plug-in.
State Registration. Recall that Shadow requires all variable application state to be registered for replication
among virtual nodes. Scallion must find and register all Tor variables, including static and global variables.
Unfortunately, static variables are not accessible outside the scope in which they were defined. Therefore,
scallion uses standard binary utilities such as objcopy, readelf, and nm to dynamically scan, rename,
and globalize Tor symbols. Registration code is then dynamically generated based on the symbols present
in the Tor object files, and injected into the plug-in before compilation. Note that since registration also
requires the size of each variable, most Tor header files defining Tor structures are included when building
the Scallion plug-in.
Bandwidth Measurements. TorFlow [44] is a set of scripts that run in the live Tor network, continuously
measuring bandwidth of volunteer relays by downloading several files through each. TorFlow helps de-
termine the bandwidth to advertise in the public consensus document. Scallion contains a component that
approximates this functionality. However, Scallion need not perform actual measurements since the band-
width of each virtual node is already configured in Shadow. Scallion queries for these bandwidth values
through a Shadow plug-in library function and writes the appropriate file that is used by the directory au-
thorities while computing a new consensus. The V3Bandwidth file is updated as new relays join the
simulated Tor network.
Tor Preloaded Functions. In an effort to minimize the amount of changes to Tor, Scallion utilizes the same
function interposition technique as Shadow. Scallion may intercept any Tor function for which it requires
changes and implement a custom version. Changes in Tor are required only if the target function is static, in
which case Tor can be modified to remove the static specifier. We now discuss some functional differences
between Tor and Scallion.

The Tor socket function wrapper is one function that is intercepted by Scallion and modified to pass the
SOCK NONBLOCK flag to the socket call since Shadow requires non-blocking sockets. Another modification

2Scallions are onion-like plants with underdeveloped bulbs.
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involves the Tor main function, which is not suitable for use in Scallion since it contains an infinite loop.
This function is extracted to prevent the simulation from blocking, and Scallion instead relies on event
callbacks from Shadow to implement Tor’s main loop functionality.

Tor is a multi-threaded application, launching at least one CPU worker thread to handle onionskin tasks –
peeling off or adding a layer of encryption – as they arrive from the network. Scallion implements an event-
driven version of Tor’s CPU worker since Shadow requires a single-threaded, single-process application.
This is done by intercepting the Tor function that spawns a CPU worker and relying on the virtual event
library to execute callbacks when the CPU worker has data ready for processing. The CPU worker performs
its task as instructed by Tor, and communicates with Tor using a socket pair (a virtual pipe) as before. The
virtual event library simplifies the implementation of the CPU worker functionality.

Finally, Scallion intercepts Tor’s bandwidth reporting function. Each Tor relay reports its recent band-
width history to the directory authorities to help balance bandwidth across all available relays. However,
relays’ reports are based on the amount of data it has recently transferred, and the reported value is only
updated every twenty minutes if it has not changed significantly from the last reported value. This causes
relays to be underutilized when first joining the network, and causes bootstrapping problems in a brand-new
network since every node’s bandwidth will be zero for the first twenty minutes of the simulation. Without
appropriate bandwidth values, clients no longer perform weighted relay selection and instead choose relays
at random. To mitigate these problems, Scallion intercepts the bandwidth reporting function and returns its
configured BandwidthRate no matter how much data it has transferred. This leads to improved bootstrapping
and correct path selection for the simulated Tor network.
Configuration and Usability. There are several challenges in running accurate Tor network simulations
with the Scallion plug-in and Shadow. Although Shadow minimizes the memory requirements, running
several instances of Tor still requires an extremely large amount of memory. Therefore, simulations must
generally run with scaled-down versions of Tor network topologies and client-imposed network load.

Correctly scaling available relay bandwidth and network load is complicated. For example, several
relays with smaller bandwidth capacities will not result in the same network throughput as fewer relays
with larger bandwidth capacities, even if the total capacities are equal. Further, correctly distributing this
bandwidth among entry, middle, and exit nodes can also be tricky. Although live Tor consensus documents
may be used to assist in network scaling, two randomly generated consensus topologies can have drastically
different network throughput measurements. Network throughput also depends on the number of configured
clients and how much data they push through Tor. Published results about client-to-relay ratios [20] and
protocol-level statistics [22] can only be used as a rough guide to creating clients and inducing the correct
load. When generating a scaled topology, it is essential that performance measurements of simulations be
compared to live Tor statistics for accuracy.

Due to these challenges, we implemented a script to generate and run simulations given a network
consensus document. The script parses the consensus document and randomly selects relays based on
configurable network sizes. Other configurable parameters include the fraction of exit relays to normal
relays, number of clients, and client type distributions. The script eases the generation of accurate scaled
topologies and drastically improves simulator usability.

5 Verifying Simulation Accuracy
Many aspects of Shadow’s design (discussed in Section 3) were chosen in order to produce accurate

simulations. Therefore, we perform several experiments to verify Shadow’s accuracy.

5.1 File Client and Server Plug-ins
HTTP client and server plug-ins were written for Shadow in order to provide a mechanism for transfer-

ring data through the Shadow virtual network. These plug-ins also include support for a minimal SOCKS
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client and proxy. The client may download any number of specified files with configurable wait times be-
tween downloads while the server supports buffering and multiple simultaneous connections. These plug-ins
are used to test network performance during a simulation. Stand-alone executables using the same code as
the plug-ins are also compiled so that client and server functionality on a live system and network is identical
to Shadow plug-in functionality.

5.2 PlanetLab Private Tor Network
In order to verify Shadow’s accuracy, we perform experiments on PlanetLab. Our experiments consist

of file clients and servers running the software described above in Section 5.1. In our first PlanetLab experi-
ment, each of 361 HTTP clients download files directly from one of 20 HTTP servers, choosing a new server
at random for each download. 18 of the 361 clients approximate a bulk downloader, requesting a 5 MiB
file immediately after finishing a download while the remaining 343 clients approximate a web downloader,
pausing for a short time between 320 KiB file downloads. The length of the pause is drawn from the UNC
think-time distribution [12] which represents the time between clicks for a user browsing the web. Clients
track both the time to receive the first byte of the data payload and the time to receive the entire download.
We selected the fastest PlanetLab nodes (according to the bandwidth tests described below) as our HTTP
servers to minimize potential server bottlenecks, although we note that fine-grained control is complicated
by PlanetLab’s dynamic resource adjustment algorithms.

Our second PlanetLab experiment is run exactly like the first, except all downloads are performed
through a private PlanetLab Tor network consisting of 16 exit relays, 24 non-exit relays, and one direc-
tory authority. All HTTP clients also run a Tor client and proxy their downloads through Tor using a local
connection to the Tor SOCKS server.
Shadowing PlanetLab. In order to replicate the above experiments in Shadow, we require measurements
of PlanetLab node bandwidth, latency between nodes, and an estimate of node CPU speed. These measure-
ments3 allow us to configure virtual nodes and a virtual network that approximates PlanetLab. The results
and explanation of our measurements are given in Appendix B due to space limitations.
Client Performance. Figure 3 shows the results of our PlanetLab and Shadow experiments. We are mainly
interested in two metrics: the time to receive the first byte of the data payload (ttfb) and the time to complete
a download (dt). The ttfb metric provides insight into the delays associated with sending a request through
multiple hops and the responsiveness of a circuit, and also represents the minimum time a web user has to
wait until anything is displayed in the browser. Overall performance is captured by the dt metric.

Figures 3c and 3e show the ttfb metric for web and bulk clients with direct and Tor-proxied requests
both in PlanetLab and Shadow. Downloads through Tor take longer than direct downloads, as expected,
since data must be processed and forwarded by multiple relays. Shadow seems to closely approximate the
network conditions in PlanetLab, as shown by the close correspondence between the lower half of each
CDF. However, PlanetLab exhibits slightly higher variability in ttfb than Shadow as seen in the tail of the
plab and shadow CDFs – a problem that is exacerbated when downloads are proxied through Tor. Higher
variability in results is likely caused by increased PlanetLab node delay due to resource contention with
other co-located research experiments.

Figures 3d and 3f show similar conclusions for the dt metric. Shadow results appear off by a small factor
while we again see higher variability in download completion times for PlanetLab. However, inaccuracies in
download times appear somewhat independent of file size. As shown in Figure 3a, statistics gathered from
Tor relays support our conclusions about higher variability in delays. Shown is the number of processed
cells for each relay over the one hour experiment and the one-minute moving average. The moving average
of processed cells is slightly higher for Shadow because of PlanetLab’s resource sharing complexity while
the individual relay measurements also show higher variability for PlanetLab. Figure 3b shows that Shadow

3Our PlanetLab measurement data is publicly available for download [39].
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Figure 3: Shadow and PlanetLab network performance. PlanetLab download experiments were run with and without
Tor and mirrored in Shadow. As shown in (a) and (b), Shadow approximates PlanetLab performance reasonably well
while PlanetLab results show higher variability due to co-location and network/hardware interruptions. Also shown
are CDFs of the number of elapsed seconds until the first byte of a 320 KiB file (c) and a 5 MiB file (e) is received,
and the time to complete a download of the same files (d), (f).

queue times are very close to those measured on PlanetLab, and again shows PlanetLab’s high variability.
While we are optimistic about our conclusions, we emphasize that PlanetLab results should be analyzed
with a careful eye due to the issues discussed above.

5.3 Live Public Tor Network
Although the PlanetLab results show how Shadow performance compares to that achieved while running

on PlanetLab and a private Tor network, they do not show how accurately Shadow can approximate the live
public Tor network containing thousands of relays and hundreds of thousands of clients geographically
distributed around the world. Therefore, we perform a separate set of experiments to test Shadow’s ability
to approximate live Tor network conditions as documented by The Tor Project [45]. Comparing results with
statistics from Tor Metrics gives us much stronger evidence of Shadow’s ability to accurately simulate the
live Tor network.

The experiments are similar to those performed on PlanetLab: web and bulk clients download variable-
sized files from servers through a private Tor network. However, file sizes are modified to 50 KiB, 1 MiB,
and 5 MiB as used by TorPerf while configuration of Shadow nodes is also slightly modified to approximate
resources available in live Tor. In these experiments, we use 50 relays, 950 web clients, 50 bulk clients,
and 200 servers. We use a live Tor consensus4 to obtain bandwidth limits for Tor relays and ensure that
we correctly scale available bandwidth and network size, while client bandwidths are estimated with 1 MiB
down-link and 3.5 MiB up-link speeds (not over-subscribed). Each relay is configured according to the
live consensus: a CircuitPriorityHalflife of 30, a 40 KiB PerConnBWRate, and a 100 MiB
PerConnBWBurst. Geographical location and latencies are configured using our PlanetLab dataset [39].

4The consensus was retrieved on 2011-04-27 and valid between 03:00:00 and 06:00:00.
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Figure 4: Shadow-Tor compared with live-Tor network performance. TorPerf represents statistics from metrics.
torproject.org. The gray area shows TorPerf first to third quartile stretch while the dotted line represents the
TorPerf median. Shadow closely approximates Tor performance for all file sizes.

Figure 4 shows Shadow’s accuracy while simulating a shadow of the live Tor network. CDFs of Shadow
download completion times for each file size are compared with download times measured and collected
by The Tor Project. The gray area represents the first-to-third quartile stretch and the dotted line shows the
median download time from data available at The Tor Metrics Portal [45], taken from the same month as
our consensus(April 2011). To maximize accuracy, the left edge of the gray area should intersect the CDF
at 0.25, the right edge at 0.75, and the dotted line at 0.5. Our results show that the median download times
are nearly identical for 50 KiB and 1 MiB downloads and within ten percent for 5 MiB downloads while the
first and third quartiles are within 15 percent in all cases. We believe these results provide strong evidence
of Shadow’s ability to accurately simulate Tor. Further, we’ve shown that we can correctly scale down the
Tor network in our simulations while maintaining the performance properties of the live Tor network.

6 Prioritizing Circuits
We now demonstrate Shadow’s powerful capabilities by exploring a Tor circuit scheduling algorithm

recently proposed and integrated into the Tor software. In Tor, whenever there is room in an output buffer,
the circuit scheduler must make a decision about which circuit to flush. Tor’s original design used a round-
robin algorithm for making such decisions. Recently, an algorithm based on the Exponentially-Weighted
Moving Average (EWMA) of cells sent in each circuit was proposed and incorporated into Tor, and has since
become the default scheduling algorithm used by Tor relays. This section attempts to validate the results
originally obtained by Tang and Goldberg [42].
EWMA in Bottleneck Topology. The EWMA scheduler chooses the circuit with the lowest cell count,
effectively prioritizing bursty web connections over bulk transfers. Tang and Goldberg evaluated the EWMA
algorithm by creating a congested circuit on a synthetic PlanetLab network and measuring performance of
web downloads. Since the middle node was a circuit bottleneck, the benefits of EWMA for reducing web
download times were clear. However, results for bulk downloads during this experiment were not given.

We perform a similar bottleneck experiment in Shadow. We configure a circuit consisting of a single
entry, middle, and exit relay. Two bulk clients continuously download 5 MiB files to congest the circuit.
Ten minutes after booting the “congestion” clients, two “measurement” clients are started and download
for an hour: a third bulk client and a web client that waits 11 seconds (the median think-time for web
browsers [12]) between 320 KiB file downloads. The middle relay is configured as a circuit bottleneck with
a 1 MiBps connection while all other nodes (relays, clients, and server) have 10 MiBps connections.

We run the above experiment modifying only the scheduling algorithm. We test both the round-robin
scheduler and the EWMA scheduler with a CircuitPriorityHalfLife of 66 as in [42]. Relay buffer
statistics [43] are shown in Figures 5a and 5b. Notice a significant increase in traffic at the ten-minute mark,
at which point the “measurement” clients start downloading. Figure 5a shows that the number of processed
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Figure 5: Seven-node bottleneck experiment similar to that performed by Tang and Goldberg [42]. The number
of cells processed (a) and queued (b) increases at Time=10, when the measurement clients begin downloading. The
EWMA scheduler improves responsiveness for bursty traffic (c), (d), and (e) but, contrary to the author’s claims,
decreases performance for bulk downloads (f).

cells is similar for all relays, except occasionally the exit relay processes fewer cells due to middle relay
congestion. Figure 5b shows that the circuit queues increase for the exit and middle relay while the entry
relay’s circuit queues are empty due to sufficient bandwidth to immediately forward data to the client.

Figures 5c and 5d show the performance results obtained from the web client for both schedulers. As
expected, the time to the first byte of the data payload and the time to complete a download are both reduced
for the web client, since bursty traffic gets prioritized ahead of the bulk traffic. The time to first byte
for the “measurement” bulk downloader in Figure 5e also improves for a large fraction of the downloads
because each new download originating from a new circuit will be prioritized ahead of the “congestion”
bulk downloads. However, after downloading enough data, the “measurement” bulk client loses its priority
over the “congestion” bulk clients and the time to first byte converges for each scheduler.

Tang and Goldberg claim that, according to Little’s Law [19], bulk transfers will not be negatively
affected while using the new circuit scheduler. While this may be theoretically true, it is not clear that it
will hold in practice. The authors find that Little’s Law holds when a single relay in the live Tor network
uses the EWMA scheduler: their results show that bulk download times are not significantly different for
each scheduler. However, our results in Figure 5f indicate otherwise. Bulk download times are noticably
worse for the EWMA scheduler, with a significant increase at around the 40th percentile. This increase
again happens when the “measurement” bulk client loses its priority over the “congestion” bulk clients. Our
results suggest a deeper analysis of the EWMA scheduling algorithm is appropriate.
EWMA in Network-wide Deployment. Tang and Goldberg’s experiments suffer from a major limitation
of scale: the experiments were run either on three-node PlanetLab topologies, or in the live Tor network with
only a single relay scheduling with the EWMA algorithm. Although they provide results for what a single
relay might expect when switching scheduling algorithms, they do not consider the network-wide effects of
deploying to all relays simultaneously.
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Figure 6: Performance of a full-network deployment of the EWMA circuit scheduler and vanilla Tor using a round-
robin scheduler. Load is generated with 950 web clients and varied using (a)–(c) 25 bulk clients (d)–(f) 50 bulk clients,
and (g)–(i) 100 bulk clients. While the EWMA circuit scheduler works best under heavily loaded networks, there are
EWMA half-life configurations that lead to reduced client performance.

We explore the performance gains possible with the EWMA scheduler through a network-wide deploy-
ment in Shadow. We test the EWMA circuit scheduler with a range of half-life configurations and compare
performance to the round-robin scheduler used in vanilla Tor. As in Section 5.3, we use 200 servers, 50 re-
lays and 950 web clients for our experiments. To analyze the effects of various network loads on the sched-
uler, we run separate experiments configured with each of 25, 50, and 100 bulk clients. The adjusted load
is significant since bulk clients account for a large fraction of network traffic. To reduce random variances,
we run each experiment five times and show the cumulative results of each configuration by aggregating the
results of all five experiments. Our results are shown in Figure 6.

Under a load of 25 bulk clients, Figures 6a–6c show that the EWMA circuit scheduler reduces perfor-
mance over vanilla Tor for all clients, independent of the configured half-life. Bulk download times seem
to be affected the most (6c), but our experiments indicate there is also a significant reduction in responsive-
ness for web clients (6a). As load increases to 50 bulk clients, Figures 6d–6f show that there are half-life
configurations that still reduce performance when compared to vanilla Tor. The 30 and 90 second EWMA
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half-life configurations appear to improve performance for web clients (6d, 6e), but performance for bulk
clients is either reduced or shows less improvement (6f). Performance is reduced for all clients when using a
3 second half-life. Finally, Figures 6g–6i show performance under the load of 100 bulk clients. Under heavy
load, the EWMA scheduler appears to perform the best for web clients (6g, 6h) while bulk clients see no
improvements over vanilla Tor and the round-robin scheduler (6i). Note that we also tested the schedulers
under a lighter load than shown in Figure 6, but performance when the network is too lightly loaded is nearly
identical regardless of the selected circuit scheduler. For these results, and responsiveness for bulk clients
under the loads decribed above, please see Appendix C.

We conclude from our results that the EWMA scheduler should not necessarily be used under all network
conditions since it is not clear that performance will always improve. When improvements over the round-
robin scheduler are possible, they may be insignificant or depend on a correctly configured half-life. Tang
and Goldberg find that low half-life values close to 0 and high values close to 100 result in little improvement
when compared to unprioritized, vanilla Tor. We find this to be true under lighter loads, but Figure 6
shows that larger half-life values result in better performance for more heavily loaded networks. Our results
illustrate that performance benefits are heavily dependent on network traffic patterns, and we stress the
importance of frequently assessing the network to assist in determining appropriate half-life values over
time. We suggest that more analysis is required to determine if the EWMA scheduler actually improves
performance in the live Tor network, and if relays should enable it by default.

7 Related Work
This section reviews several experimentation techniques that have been used to test Tor’s performance

and resistance to various attacks. A test environment that accurately reflects Tor’s behavior is crucial to
produce meaningful results. We now briefly explore experimentation techniques chosen by researchers to
evaluate Tor proposals. We note that Kiddle [16] provides a comprehensive analysis and discussion of
system simulation and emulation techniques, Naicken et al. [26, 27] provide details on several generic
simulators, and Bauer et al. [4] provide an in-depth survey of experimental approaches historically used in
Tor-related research.
Simulation. Simulation typically involves creating abstract models of system processes and running multi-
ple nodes in a single unified framework. Experiment management is simplified since there are many fewer
simulation host machines (typically one) than simulated nodes. By abstracting system processes, simulators
can run much more efficiently and are not required to run in real time. However, the abstraction process has
the potential to reduce accuracy since the simulator may not encompass complex procedures that may in
fact be important to system interaction. Although generic simulation platforms exist [18, 29, 30, 41], they
are not capable of running unmodified versions of the Tor software.

Simulation has often been employed for Tor research, but simulators tend to be written for a specific
problem and may be difficult to apply to a generic context: Murdoch and Watson explore Tor path selec-
tion strategies and algorithms [25], O’Gorman and Blott simulate packet counting and stream correlation
attacks [33], Ngan et al. study the effects of their gold-star priority scheme on Tor performance [28], and
Jansen et al. simulate queuing models and new traffic prioritization mechanisms as part of BRAIDS [15].
These simulators have either become unmaintained or are not publicly available, making the results obtained
with them challenging to validate.
Emulation. A competing and fundamentally different experimentation approach involves emulation. An
emulator “tricks” an application or operating system that it is running on its own physical machine, when
in fact it is virtualized in software. Emulators require a large amount of overhead to ensure the emulated
software runs in real time while providing the virtualization layers needed to emulate an entire system.
This has the potential to make emulation more accurate than simulation, but much less scalable: emulators
typically run tens or hundreds of nodes while simulators run thousands.

14



Due to intensive resource requirements, emulation platforms often utilize a large testbed of geographi-
cally distributed physical hardware. PlanetLab [7] and DETER [5] are examples of whole-system emulation
testbeds. Both of these frameworks only supply a few hundred nodes to a user. Several Tor studies have uti-
lized the PlanetLab and DETER testbeds for experimenting with traffic analysis attacks [3, 6, 13], attacks on
Tor bridges [23], and relay circuit scheduling [42]. Due to resource consumption and co-location of nodes
on each physical machine, results on these testbeds often suffer from a reduced and false sense of accuracy.
Further, distributed experiments like those run on PlanetLab are challenging to manage and control while
results are difficult to recreate.

A Tor emulation testbed has recently been simultaneously and independently proposed by Bauer et al.
[4] based on the ModelNet emulation platform [46]. The emulation testbed, called ExperimentTor, works by
configuring multiple host machines with new operating system installations. Some of these host machines
run a version of ModelNet link emulators while the remaining machines run Tor and other application
instances. Tor nodes are given IP addresses from separate virtual interfaces to allow multiple nodes per
machine while sending all traffic over the ModelNet hosts to emulate configured network properties.

Shadow has several advantages over ExperimenTor despite having similar goals and motivations. First,
Shadow is more usable than ExperimenTor, which requires multiple physical machines, kernel modifi-
cations, and complex configuration. Shadow can be run as a stand-alone user application without root
privledges and requires little configuration, leading to an extremely small barrier to entry and improving ac-
cessibility to students, developers, and researchers around the world. Second, Shadow is more efficient and
scalable than ExperimenTor. Shadow implements a discrete-event simulator which allows full utilization
of computational resources while eliminating the requirement of running in real time: experiments may run
either faster or slower than real time without affecting accuracy. Conversely, ExperimenTor suffers from
both CPU and bandwidth bottlenecks: the CPUs on the machines running the ExperimenTor testbed must
run at far less than 100 percent utilization and the aggregate traffic load from all application instances must
not exceed the capacity of the physical network connecting the host machines. Both requirements must be
met to ensure the emulated applications do not lag, since lag would skew and invalidate results obtained
in an experiment. Shadow also minimizes the memory overhead of running multiple applications on a sin-
gle machine with its “state swapping” approach to memory management whereas ExperimenTor duplicates
entire copies of the application in memory. Finally, Shadow allows for a richer customization of the exper-
imental process, e.g. adversarial entities could easily be added to links between nodes to allow monitoring
of network level traffic. Similar customizations would be difficult to add to an ExperimenTor testbed.

8 Conclusion
In this paper, we presented the design and implementation of a large scale discrete event simulator

called Shadow, and a plug-in called Scallion that is capable of linking to and running the Tor software
over a simulated network. In addition to an explanation of Shadow’s non-trivial design, we performed an
extensive experimental analysis to verify the accuracy of Tor simulations. We found that client performance
for simulated Tor clients is surprisingly congruent to performance achieved through the live public Tor
network. High accuracy is achieved by “shadowing” the Tor network, considering relay characteristics
from a live Tor consensus and inter-node latency characteristics from PlanetLab ping measurements. As a
proof of the powerful capabilities of our simulation approach, we explore the EWMA scheduler recently
proposed and currently used in Tor to validate previous results and determine the effects of a network-wide
deployment. We found that correct half-life configurations are highly network and load dependent, and that
EWMA actually reduces performance for clients under certain network conditions. Although enabled by
default, it is unclear if the scheduler improves performance in the live Tor network.
Future Work. There are a wide range of problems that can be explored using Shadow, including UDP
transport mechanisms and alternative scheduling approaches. Shadow may also be used to validate previous
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work and analyze Tor attacks under various network configurations and client models. We hope that Shadow
is useful to others in their future research.

There are several foundational modifications that can improve Shadow’s runtime performance. The
most significant improvement will enhance Shadow’s ability to run in parallel environments, leading to
faster experiments and better utilization of hardware resources. Shadow is open-source software that is
available for download and includes useful tools for generating and running experiments. We feel Shadow
is invaluable for understanding and evaluating Tor, and hope it will make a lasting impact on the community.
Acknowledgments. We thank John Geddes for assistance with Shadow plug-ins; Eric Chan-Tin, Denis
Foo Kune, and Max Schuchard for discussions about Shadow’s design; Chris Wacek for usability feedback;
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[46] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and D. Becker. Scalability and accuracy in a large-scale

network emulator. SIGOPS Operating Systems Review, 36(SI):271–284, 2002.
[47] C. Viecco. UDP-OR: A fair onion transport design. In Proceedings of Hot Topics in Privacy Enhancing Technologies

(HOTPETS’08), 2008.

17

http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
http://www.openssl.org/
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://github.com/shadow/
http://shadow.cs.umn.edu/
http://www.cc.gatech.edu/computing/compass/pdns/index.html
http://www.cc.gatech.edu/computing/compass/pdns/index.html
https://gitweb.torproject.org/torspec.git/blob_plain?f=proposals/166-statistics-extra-info-docs.txt
https://gitweb.torproject.org/torspec.git/blob_plain?f=proposals/166-statistics-extra-info-docs.txt
https://gitweb.torproject.org/torflow.git/
http://metrics.torproject.org/


Appendices
A Core Simulation Engine

Shadow is a fork of the Distributed Virtual Net-

Figure 7: Main loop and conservative multi-process syn-
chronization using dynamic barriers. Safe execution win-
dows are calculated using the minimum local worker time
plus the minimum simulated latency between nodes. The
barrier is dynamically pushed as local times advance.

work (DVN) Simulator [10]. DVN is a discrete
event, multi-process, scalable UDP-based network
simulator written in C that can simulate hundreds
of thousands of nodes in a single experiment. DVN
takes a unique approach to simulation by running
UDP-based user applications as modules loaded at
runtime. Among DVN’s core components are the
per-process event schedulers, a process synchronization algorithm, and a module subsystem. We describe
the main components but note that Foo Kune et al. [10] provide details in much greater resolution.
Discrete-event Scheduler. DVN implements a conservative, distributed scheduling algorithm (see Figure 7)
that utilizes message queues to transfer events between workers. The scheduling algorithm consists of three
phases: importing events initiated from remote nodes, synchronizing worker processes, and executing local
node events. During the import phase, workers process incoming messages containing events and store them
in a custom local event priority queue. After all messages are imported, workers send synchronization mes-
sages (discussed below) to other workers and finally process local events in non-decreasing order. Incoming
messages are buffered while processing local events and handled during the next import phase.
Multi-process Synchronization. Messages between the master and workers enable global time synchro-
nization throughout the simulation. Synchronized time is vital to ensure events are executed in the correct
order since a conservative scheduling algorithm can not revert events. By exchanging messages, each pro-
cess tracks the local time of all other processes. A barrier is computed by taking the minimum local time of
each process and adding the minimum network latency between any two network nodes in the simulation.
The barrier represents the earliest possible time that an event from one process may affect another process.
Each process may execute events in its local event queue as long as the event execution time is earlier than
the barrier. This is called the safe execution window: any event in this window may be safely executed with-
out compromising the order of events (i.e. time will never jump backwards to execute a past event). Barriers
are dynamically updated as new synchronization messages update local times. Future events are allowed
to execute as the barrier progresses through time. This synchronization approach allows the distribution of
events to multiple processes.
Module Subsystem. DVN contains a subsystem for dynamically loading modules. Modules, pieces of
code that are run by nodes, are generally created by porting application code to use DVN network calls
and implementing special functions required by DVN. The special functions allow modules to receive event
callback notifications from DVN. Although each module may be run by several nodes, module libraries are
only loaded into memory once. In order to support multiple nodes running the same module, DVN requires
each module to register all variable application state. Using the registered memory addresses, DVN may
properly load variables before passing execution control to the module, and unload and save variables after
regaining control.

B Shadowing PlanetLab
In order to replicate the PlanetLab experiments discussed in Section 5 in Shadow, we require measure-

ments of PlanetLab node bandwidth, latency between nodes, and an estimate of node CPU speed. These
measurements allow us to configure virtual nodes and a virtual network that approximates PlanetLab. First,
we estimate PlanetLab node bandwidth by performing an Iperf [14] bandwidth test from each node to ev-
ery other node. We estimate a node’s bandwidth as the maximum achieved upload rate to any other node.
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Figure 8: Network and CPU measurements used for Shadow experiments. (a) Bandwidth measurements of PlanetLab
nodes and live Tor relays. Relay bandwidth values were taken from a live consensus. (b) Latency between PlanetLab
nodes, shown as aggregate (“world”) and inter-region latency measurements. (c) Measured CPU speeds for Planet-
Lab nodes and our Intel Core2 Duo lab machine arcachon. The results from arcachon were normalized to create a
distribution usable in Shadow.

Figure 8a shows the results of our measurements compared with available bandwidth from Tor relays ac-
cording to the Tor network status consensus. Notice the sharp increase in the number of nodes with 1.25
MiBps (10 Mbps) and 3.75 MiBps (30 Mbps) connections. PlanetLab rate-limiting is the likely reason: the
most popular node-defined limit is 10 Mbps while PlanetLab also implements a fair-sharing algorithm by
distributing opportunistic fractions of bandwidth to active slices. Also notice that our PlanetLab distribution
does not approximate the live Tor distribution well, which means that our measurements in this experiment
are not a good indication of the performance of the live Tor network. Recall, however, that our focus here is
accurately shadowing PlanetLab: re-creating a network consistent with live Tor is discussed and explored
below in Section 5.3.

Once we have bandwidth values for every node, we perform latency estimates between all pairs of nodes
using the Unix command ping. The aggregate results of world latencies are shown in Figure 8b. Deriving
a network model and topology from the latency measurements is a bit more complex since it depends on
the geographical location of the source and destination of a ping. We approximate a network model by
creating nine geographical regions and placing each node in a region using a GeoIP lookup [21]. We then
create a total of 81 CDFs representing all possible inter- and intra-region latencies. We configure nine virtual
networks in Shadow and connect them into a complete graph topology, where latencies for packets traveling
over each link are drawn from the corresponding CDF. Latencies for a few selected regions are also shown
in Figure 8b.

Finally, we measure CPU speed of each node in order to accurately configure delays for Shadow’s
virtual CPU system described in Section 3.3.2. As in our previous description, OpenSSL speed tests are
run to get raw CPU throughput for PlanetLab nodes. Since PlanetLab nodes are often constrained, we also
created a normalized distribution based on the CPU speed of arcachon – a standard desktop machine in
our lab. CPU throughput is shown in Figure 8c. Tor application throughput – measured by benchmarks in
which the middle relay is configured with a bandwidth bottleneck – is combined with raw CPU throughput
measurements to configure each node’s virtual CPU delay.

C Circuit Scheduler Performance
In Section 6, we showed results for web client responsiveness and overall performance for both web

and bulk clients with different circuit schedulers under different network loads. In Figure 9 we show that
responsiveness for bulk clients follow the same pattern as previously shown in Figure 6. (The results were
obtained from the same experiments described in Section 6.) Although time to first byte is less important
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Figure 9: Responsiveness for bulk clients under a varying network load of 950 web clients and (a) 25 bulk clients, (b)
50 bulk clients, and (c) 100 bulk clients. As in Figure 6, the network is less responsive under lighter loads when using
the EWMA circuit scheduler.
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Figure 10: Network performance under an extremely light load of 475 web and 25 bulk clients. When the network
load is too light, the circuit scheduling algorithm has an insignificant impact on performance.

for bulk clients, the results support our conclusion that the EWMA circuit scheduling algorithm reduces per-
formance both under lighter loads and when the half-life is not set correctly. Figure 10 shows performance
under an extremely lightly loaded network of 475 web and 25 bulk clients. The results support our claims
in Section 6 that choice of circuit scheduler is insignificant for client performance when the load on the
network is too light.
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