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Abstract
We present the Proteus system for censorship circumvention.
Proteus provides a programmable protocol environment in
which new communication protocols can be expressed as
concise and comprehensible specification files. This design
allows clients and proxies to quickly respond to new cen-
sorship strategies just by installing new specification files.
Proteus improves on prior programmable designs by improv-
ing host safety from malicious specifications, providing a
specification language that is complete and comprehensible
to non-specialists, and supporting multiple simultaneous pro-
tocols at a proxy for versioning and localization. This paper
represents work in progress and provides an overview of the
Proteus design, as well as examples showing that it can ex-
press existing encrypted protocols.

1 Introduction

Internet censorship is an increasingly common tool of polit-
ical and social control. Consequently, anti-censorship com-
munities have developed tools to circumvent censorship. One
popular design for those tools is to relay traffic through prox-
ies using an encrypted protocol [11, 15, 16, 21, 25, 26, 29].
However, if the censor can identify when connections are
being proxied, they can block the use of those designs. Some
proxy systems can be identified at the protocol level, that is,
using an identifiable feature of the protocol messages, such
as a header or a byte pattern [1, 24, 27, 28].

In response, Dyer et al. [6] proposed a programmable sys-
tem for communication protocols. Their system, Marionette,
provides a language and tools that make it easy to write and in-
stall new protocols at the client and proxy. This design allows
new censorship methods to be quickly evaded by reconfigur-
ing the proxy protocol. A variety of proxy protocols can be
used by different proxies, making comprehensive censorship
difficult to implement.

A programmable proxy system by itself does not provide
a strategy to avoid detection by a censor—it only enables
strategies to be quickly implemented and deployed. Censors
may install blocking rules for deployed protocols, prompting
the development of new protocols by evaders; this cycle is
the so-called arms race interaction of censors and evaders.
Evaders have some advantages in this race. As the initiators
of connections, they are in a position to test and measure rules

being applied by a censor, but conversely the censor cannot
easily induce a potential evader to make proxied connections.
Also, the population of network users is typically large and
diverse relative to the authorities and professionals designing
and enforcing the censorship regime. It is typically much
easier to target evasion of a relatively small set of blocking
rules than it is for a censor to block a potentially large variety
of circumvention strategies.

Two case studies demonstrate the usefulness of pro-
grammable protocol systems. Bock et al. [3] measured proto-
col filtering being applied in Iran and identify a set of rules to
recognize the allowed protocols (namely, DNS, HTTP, and
HTTPS). Once such rules are discovered, a programmable
circumvention tool could simply distribute updated protocol
specifications containing any of the allowed fingerprints. In
China, measurement studies have revealed targeted blocking
of Shadowsocks [2, 27], which also affects other fully en-
crypted protocols such as obfs4 [29] and VMess [23]. The
studies reveal a protocol blocklist being applied to connec-
tions to certain destinations outside the country. The inferred
rules are simple, and a programmable design would allow cir-
cumvention systems like Shadowsocks to quickly distribute
protocol modifications to evade them.

Despite its potential benefits, there exist obstacles to using
the Marionette system in practice. First, Marionette poses a
safety risk to clients and proxies. It executes user-specified
plugin code in a generic Python runtime environment, mak-
ing its hosts vulnerable to a malicious protocol distributor
that crafts the protocol files to exploit vulnerabilities or abuse
privileges of the runtime. Even non-malicious protocol imple-
mentations may contains bugs that present a risk to the host
machines. Accepting such a threat would give distributed
proxy networks, such as the Tor network [4], a single point
of failure. Second, Marionette is not expressed in a self-
contained language that is both available for use today and is
accessible to developers and activists. Its custom specification
language is defined only implicitly by the implementation of
its interpreter, and the parsing and packaging of communi-
cations data must be implemented by plugins written in a
standard programming language. Third, Marionette does not
support multiple protocols and version upgrades. While new
protocols can be developed to respond to changes in censor-
ship rules, clients and proxies have to synchronously upgrade
to the new protocols.

To address these weaknesses, we present the Proteus sys-
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tem. Proteus ensures safety by specifying a limited runtime
system that prevents the protocol specification files from be-
ing maliciously used to exploit proxies or clients. Proteus
also provides a comprehensible specification of the language
for its protocol specification files. They are designed to be us-
able by ordinary programmers, and their message formatting
component, which defines the format of individual protocol
messages, requires little programming background to config-
ure. Finally, we describe how multiple protocols can be si-
multaneously supported by a single Proteus proxy. As special
cases of this, (1) protocol versioning can be used to respond
to new censorship rules while still supporting existing clients,
and (2) proxies can support clients in different locations with
different strategies to evade their censors.

For a client and proxy to use Proteus to circumvent censor-
ship, they must both be configured with the same specification
files, and those files must specify a protocol that evades the
techniques being applied by their censor. We do net expect the
specification files to be designed by individual users. Instead,
we expect that domain experts, such as the Tor Project, or
activists, such as the Shadowsocks developers, will develop
and distribute those files to their communities.

This paper describes work in progress on Proteus. We pro-
vide high-level descriptions of the runtime environment, a
grammar for our programming language, and example pro-
tocol specifications that implement mocked versions of two
existing encrypted protocols (namely, Shadowsocks and a
Noise protocol [12]). Work is ongoing to fully implement
Proteus and test it in target network environments. The work-
ing code repository for Proteus can be found at the following
link: https://github.com/unblockable/proteus.

2 The Proteus System

The Proteus system is intended to enable fast reaction to a
changing censorship environment. Its key design goals are
(1) to enable pairwise communication, (2) to provide proto-
col programmability, (3) to provide safety from malicious
protocol updates, and (4) to allow for graceful updates.

The basic functionality requirement is bidirectional com-
munication between two parties. A particular focus is on
enabling secure protocols that use cryptography to provide
message confidentiality and integrity. While unencrypted pro-
tocols can be implemented, Proteus’s library functions and
parsing support are designed to facilitate cryptographic func-
tionality, such as encryption, key exchange, and signatures.

Proteus communication protocols are programmable to
allow its users to quickly adjust to changes in censorship rules
and techniques. Proteus supports a wide range of different
protocol state machines, message formats, and cryptographic
primitives, which are commonly targets of censorship rules.
Changing a protocol can easily be accomplished by updating
a concise specification file which is written in a language that
is designed to be familiar to programmers.

Proteus is designed to provide safety to its users by limiting
the power of its execution environment thereby reducing the
risk of protocol updates (relative to updating entire protocol
executables). The execution environment can only interact
with host operating systems through a limited set of system
calls. Also, there is a limit on the memory consumed during
protocol execution. Finally, the protocol specifications are
expressed in a high-level language that enables inspection by
the users before being installed.

2.1 Design
Proteus is designed to be used in a client-server setting. The
client and proxy server communicate using a Proteus protocol
designed to evade network censorship. The client is defined
to be the party that initiates the connection, and the server
must be running and waiting for connection attempts. Each
side must possess the same Protocol Specification File (PSF)
that provides the protocol specification. That PSF must be
produced and distributed out-of-band, and in the setting of an
adversarial censor, the PSF may need to be kept secret from
the censor (for example, when specifying some distinctive
but otherwise unknown protocol).

Proteus supports versioning and localization at the server.
That is, the server may hold multiple PSFs and simultane-
ously support their multiple protocols. This feature allows the
server to upgrade its protocol while remaining accessible to
clients running previous protocol versions, as well as support
protocols suitable for clients located in different censorship
regimes. However, the method Proteus uses to choose the cor-
rect protocol requires that the supported protocols must have
mutually compatible specifications to guarantee the server
makes a correct protocol choice.

Multiple key setup assumptions can be used to facilitate
secure communication. Keys can be provided as inputs at
startup in addition to the PSFs, and then they can be used by
the protocol. For example, a pre-shared symmetric key or a
server public key can be provided as input by both sides to be
used for encryption and authentication. Such keys must be
distributed out-of-band, just as with the PSFs. Other keys may
be negotiated during the protocol itself, such as ephemeral
public keys or session symmetric keys, and the construction
and use of those keys is specified directly in a PSF.

The system assumes that TCP is used as the underlying
transport. Message delivery is assumed to be reliable and
in-order. There is a notion of a connection between a pair
of hosts, and it is opened by the client but may be closed by
either side. The network stack may fragment messages, which
should be tolerated by the protocol being used.

2.2 Abstract Model
We highlight the essential parts of the Proteus system using
an abstract model. The Proteus abstract model consists of two

2

https://github.com/unblockable/proteus


A Proteus
Protocol

Application
(e.g., Firefox) Internet

App(R)

App(W)

Net(W)

Net(R)

Figure 1: Relationship of the read and write buffers to a
Proteus protocol. A protocol takes in data through the read
buffers, and outputs data through the write buffers.

components: (1) a fixed-size execution environment Env, and
(2) a protocol P to run inside of the execution environment.
Protocol actions will be triggered from events defined by a
set of possible events E. Each Proteus connection is handled
by an independent pair of protocol instances (one instance for
the client and one for the server).

The fixed-size execution environment Env = (N,B) is an
ordered pair determining the total state of a protocol execution:
N is a positive integer that determines the size of the protocol’s
global state in bytes, and B is a positive integer that determines
the buffer size limit in bytes.

These parameters define the global protocol memory G =
{0,1, . . . ,255}N and four bounded buffers with which the pro-
tocol interacts: application read-only and write-only buffers
App(R) and App(W), and network read-only and write-only
buffers Net(R) and Net(W), each consisting of B bytes. The
relationship of these buffers to the protocol is shown in Fig. 1.

Protocol P=(F ,δ) is an ordered pair parameterized by Env.
F is a finite set of functions F1, . . . ,Fk. Each function takes as
input the memory and buffer state and outputs new state, i.e.,
Fi : {0,1, . . . ,255}N+4B → {0,1, . . . ,255}N+4B. Each func-
tion is a fixed-sized boolean circuit. δ : E→ F is a dispatch
function that maps each event to an event handling function.

Proteus protocols are event driven, which is a common
programming paradigm for message passing and network
protocols. Events are generated and enqueued as application
and network transmissions occur. Events are processed in a
loop where each event invokes an event-handling function Fi
determined by δ. The event-handling loop is shown in Alg. 1.

Events are assumed to occur atomically and may be gen-
erated concurrently as the protocol is executed (e.g., an im-
plementation of the Proteus runtime could run Alg. 1 in one
thread of execution and monitor for events in another thread).
The set of possible events E is given in Table 1. The most
common events are EV-APP and EV-NET, which occur when
new data is made available by the application or commu-
nicating party. Other events are used to handle connection
initialization, termination, and errors.

2.3 Implementation
The abstract model is useful for understanding how Proteus
protocols work, but does not describe how these protocols
are specified or the details of the protocol runtime environ-

Algorithm 1 Main event-handling loop for Proteus protocols.
▷ Initialization:

1: G← 0N

2: App(R)← 0B

3: Net(R)← 0B

4: App(W)← 0B

5: Net(W)← 0B

6: EV-INIT is placed on the event queue.

▷ Event Processing:

7: repeat

8: The next event e is popped from the event queue. Execution is

paused if an event is not yet available.

9: The event handler function is obtained: f ← δ(e).

10: Let S be shorthand notation for the state of the execution,

S ≡ (G,App(R),Net(R),App(W),Net(W)). The event handler for e is

invoked and state is updated: S← f (S).

11: Data added to the application write-only buffer App(W) is written to

the application. The buffer is reset: App(W)← 0B . The same

action is then applied to the network write-only buffer.

12: until e = EV-TERM

ment. Here we describe the Proteus language that is used to
define the set of event handling functions F1, . . . ,Fk described
in the abstract model, which fully specifies a protocol. These
function definitions are stored in a single source code file, the
protocol specification file (PSF). In order for the language
to be both simple and safe, we intentionally limited its ca-
pabilities. For example, Proteus programs have no way of
dynamically managing memory. To enable complex function-
alities necessary for transport protocols, such as encryption,
a standard library of functions is provided for programs to
use. Because transport protocols heavily involve message
serialization and parsing, Proteus has facilities and standard
library functions to simplify message formatting.

2.3.1 Proteus Language

Proteus protocols are expressed in a PSF consisting of
(1) protocol message definitions (described further in § 2.3.3),
(2) global state variables, and (3) event handling functions.
This layout is depicted in Fig. 2. We define a custom lan-
guage which is used to write Proteus protocols. The syntax of
the language is designed to be familiar to Rust programmers
and the language has typical low-level language semantics.
A parsing expression grammar recognizing the language is
given in Appendix C. The language is designed to be simple,
minimal, easily edited, and interpreted at runtime. A variety
of standard programming language constructs are supported,
including: variable declaration and assignment; basic logi-
cal and arithmetic operations; branching execution with if
and match statements; type casting; standard library function
invocation; and repeated evaluation with statically-bounded
for loops. The language is statically typed and statically
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Table 1: Description of events defining the event set E.

Event Description

EV-INIT The initialization event will always occur exactly
once at the very beginning of every protocol execu-
tion.

EV-APP New data was written from the application into the
application read buffer App(R).

EV-NET New data was written from the network into the
network read buffer Net(R).

EV-TIMER A timer expired.
EV-SIGQUIT The execution process received a quit or kill signal.
EV-PANIC The execution process encountered an unrecoverable

error, such as an out-of-memory error.
EV-APP-CLOSE The application closed its side of the connection.
EV-NET-CLOSE The network closed its side of the connection.
EV-TERM The final termination event. This event occurs ex-

actly once at the very end of a protocol execution.
It fires (1) immediately following EV-SIGQUIT, (2)
immediately following EV-PANIC, or (3) after both
the application and network connections are closed.

Event Handlers

Global State Variables

Message Definitions

Layout of a Protocol Specification File (PSF)

Figure 2: Schematic overview of PSF that consists of:
(1) protocol message formats, (2) global variables used by
event handlers; and (3) event handling functions.

allocated, with simple function-level lexical scoping and life-
times (except for global variables, which have global scope
and static lifetime). Listing 1 shows a simple example of code
written in the Proteus language.

We intentionally limit the Proteus language to include only
a small number of basis functionalities in order to promote
safety of the language and execution environment. Specifi-
cally, we exclude: dynamic memory allocation; function or
class declaration; template and macro metaprogrammming1;
exceptions or exception handling; arbitrary system calls; in-
finite or dynamic loops; jumps; floating point arithmetic;
pointer arithmetic; concurrency; and explicit memory derefer-
encing. Proteus programs cannot consume more than a fixed
amount of memory, and procedure execution times may be
measured before the procedures are invoked. Unsafe memory
operations are disallowed to prevent this common source of
programming errors. Many of these choices coincide with
common standards for writing safety-critical code [9].

To limit host-machine access, only the narrow set of nec-
essary system calls is allowed by the runtime. These trusted
system calls related to network communication are made
available through the standard library of functions available
to Proteus programs, which we describe next.

1We do allow a limited number of trusted standard library functions to be
defined with template types and macros to improve code concision.

1 let n: u16 = 0;
2

3 for n in 1..=100 {
4 if n % 15 == 0 {
5 log("fizzbuzz");
6 } else if n % 3 == 0 {
7 log("fizz");
8 } else if n % 5 == 0 {
9 log("buzz");

10 }
11 }

Listing 1: A simple example showing the “fizzbuzz” program
implemented in the Proteus language. The syntax closely
follows that of the Rust language.

2.3.2 Standard Library

Because Proteus programs are fairly limited in what they can
express, a standard library is defined to provide common and
required functionalities for communication protocols. Stan-
dard library details and functions are further described in
Appendix B. Categories of functions include:
I/O Related: These functions are used to manipulate the com-
munication buffers. Functions include buffer_length(),
buffer_peek(), buffer_pop(), buffer_push(),
buffer_close(), and buffer_close_all().
Utility: Utility functions are also provided for opera-
tions such as getting the value of an environment vari-
able or setting a timer. Functions include getenv()
(which retrieves the value of an environment variable),
log(), arm_timer(), disarm_timer(), get_timer(),
and get_random_bytes().
Message Formatting: Special functions are provided to for-
mat and parse protocol messages. These functions are de-
scribed further in § 2.3.3.
Cryptographic: A number of cryptographic facilities must be
provided to support common operations, such as encryption
and message authentication. We assume a standard set of
functionalities in the standard library, such as those provided
by the RustCrypto packages [20].

2.3.3 Message Formatting

Message formatting constitutes an central part of the Proteus
language. The Proteus language includes message definition
functionality, where the layout and binary encoding of proto-
col messages can be defined. The syntax for protocol message
formats is contained in the Proteus language grammar gram-
mar (Appendix C). An example of a message format specifica-
tion is shown in Listing 2. This example describes a protocol
message called EncryptedMessageFormat with 3 fields: (1)
PayloadSize, (2) EncryptedPayload, and (3) MACTag. The
order of enumeration in the format specifier defines the order
that these fields appear in the serialized message. Each field
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1 DEFINE EncryptedMessageFormat
2 { NAME: PayloadSize; TYPE: u16 },
3 { NAME: EncryptedPayload;
4 TYPE: [u8; PayloadSize.value] },
5 { NAME: MACTag; TYPE: [u8; 16] };

Listing 2: Example protocol message definition with 3
fields—PayloadSize, EncryptedPayload, and MACTag—
that are serialized by their order of declaration and types.

has a corresponding type parameter, which determines how
the field is represented in binary format. Arrays with type
t and length ℓ are denoted [t; ℓ]. Array lengths may be con-
cretely defined (e.g., 2 elements), or defined using a simple
unambiguous expression (e.g., for the EncryptedPayload
field, the size is set to PayloadSize.value, which indicates
that the PayloadSize field stores the length of the field. An
example of message formatting and parsing is shown below:

1 // Dummy values. In practice, the payload and MAC tag
2 // would be set by an encryption function.
3 let payload: [u16; 30] = [0; 30];
4 let mac: [u16; 16] = [0; 16];
5 let payload_size: u16 = 30;
6

7 // Sets the value of each field.
8 let fields: Fields = create_fields();
9 set_field(&fields, "PayloadSize", payload_size);

10 set_field(&fields, "EncryptedPayload", payload);
11 set_field(&fields, "MACTag", mac);
12

13 // The fields can then be serialized according to
14 // the EncryptedMessageFormat into a byte string.
15 let (success, b): (bool, Bytes) =
16 format(&EncryptedMessageFormat, &fields);
17

18 // This invocation parses byte string b
19 // following the EncryptedPayloadSpec format and
20 // stores the result in f2.
21 let (_, f2): (_, Fields)
22 = parse(&EncryptedMessageFormat, &b);
23

24 // Then fields can be accessed:
25 let x: u16 = 0;
26 get_field(&f2, "PayloadSize", &x);

Message formatting and parsing is designed to be easy
and flexible. For example, in a new protocol version, a mes-
sage format could be extended simply by adding new lines
specifying fields’ names and types.

2.4 Versioning

Version upgrading and localization are important aspects of
circumvention protocol design that are often overlooked. Pro-
teus enables graceful protocol upgrades and does not require
all clients and servers to update PSFs in lockstep. Instead,
servers can be simultaneously provisioned with multiple pro-
tocol versions; multiple PSFs may be executed independently
and in parallel using a view a single set of read buffers. State

Time: t0 t1 t2

Events: Receive bytes b1 Receive bytes b2

Protocols

P1 : parse(m1, b1) ⊥

P2 : parse(m2, b1) parse(m4, b2) ⊥

P3 : parse(m3, b1) parse(m5, b2) send(data)

✗

✓ ✗

✓ ✓

Figure 3: Diagram of protocols P1–P3 simultaneously parsing
incoming bytes until only one protocol P3 remains, indicating
that P3 was the correct protocol version. ✓ denotes when a
message was successfully parsed, ✗ denotes when a parsed
failed, and ⊥ denotes protocol termination.

is independently maintained for each of the running proto-
cols. This process continues until all-but-one of the protocols
have quit, or until a protocol tries to modify any one of the
buffers. In the case when all-but-one have quit, the remaining
protocol is determined to be the selected protocol version and
continues to run. If one of the protocols modifies buffer state,
then this protocol is chosen as the correct version and all other
running protocol instances are immediately terminated.

This process is shown in Fig. 3. In this example, 3
protocols—P1, P2, and P3—are executed, each of which is
configured with a separate set of message format definitions.
Two events occur which correspond to receiving bytes from
a client. The client (not depicted) is using protocol P3. Each
protocol uses a different series of message formats mi when
parsing the messages. In the shown example, protocol P1 tries
parsing the first string of received bytes b1 with an incompati-
ble message format m1 and quits upon failure (a parse failure
can occur if, for example, a field does not contain an expected
value). For protocols P2 and P3, both m2 and m3 were com-
patible message formats for the first received byte string, so
execution proceeds. When b2 arrives, P2 encounters a parsing
error using format m4 and quits, whereas P3’s parsing with
format m5 is successful. At time t2, P3 is the only protocol
version running and is the version selected to communicate
with the client.

For the Proteus versioning scheme to work as intended, Pro-
teus protocol versions should be unambiguously determined
by a client’s messages before the server is required to respond.
Many transport protocols transmit a version number in the
first message, which is accordant with our design.

2.5 Design Capabilities
The Proteus system contains the low-level building blocks
necessary to realize high-level protocol capabilities. We now
describe some of the capabilities that are commonly found in
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real-world protocols and that can be achieved in Proteus.
Message Format: A protocol message is typically composed
of multiple fields that contain important information to assist
the receiver in parsing the message and to communicate proto-
col state. For example, a length field is often used to commu-
nicate the total length of the message. Additional information
is commonly communicated in distinct message fields, such
as the message type, the protocol version, a human-readable
protocol greeting string, binary flags, cryptographic counters
or nonces, reserved (unused) or padding bytes, message au-
thentication codes, and application data. We are capable of
expressing any number of such fields and of specifying the
order in which the fields should occur within a given message
by writing PSFs in the Proteus language.
Protocol Behavior: Network protocols are commonly sepa-
rated into multiple protocol phases, and our language allows
us to express multiple of such phases. During a handshake
phase, specific message types are sent between the commu-
nicating parties to, for example, negotiate protocol versions,
negotiate ciphersuites, and exchange cryptographic key mate-
rial. The handshake phase may encompass several messages
in multiple rounds of communication. Our standard library
enables us to express precisely how data communicated dur-
ing the handshake phase should be processed, e.g., to enable
encryption. During a data phase, the primary focus is sending
application data, possibly using an encryption method estab-
lished during the handshake and possibly sending diagnostics
in parallel. Finally, during a shutdown phase, protocols can
close a connection by sending an error message or performing
other termination procedures. Proteus allows us to express
the logic for establishing such protocol phases.
Cryptographic Behavior: Encrypted protocols contains
logic for establishing a secure communication channel. Cryp-
tographic logic can be quite complex; for example, a ci-
phersuite commonly involves algorithms for key exchange,
encryption, and message authentication. We support cryp-
tographic logic through a standard library of functions, in-
cluding cryptographic functions such as those supported in
RustCrypto [20]. For example, Proteus allows us to express
a key exchange procedure using ECDH in the Curve25519
group with the SHA256 hash function, or that encryption
should be performed with a ChaCha20 stream cipher with a
Poly1305 authentication tag. Functions that require auxiliary
data, such as key material when constructing an ephemeral
DH key, can obtain it from a peer using messages exchanged
during a handshake phase as previously described.

2.6 Design Limitations
Although the Proteus system offers a large degree of flexi-
bility due to its focus on safety and simplicity, some com-
plex network protocols cannot be represented. For example,
the file transfer protocol [14] multiplexes protocol messages
over multiple connections and cannot be replicated in Pro-

teus because every client-server session is isolated to a single
connection and protocol instance. Some real-world network
protocols use the host’s persistent storage to maintain proto-
col state. TLS, for example, authenticates certificates with
certificate stores located on disk. Proteus restricts system call
usage from within an protocol, and hence this functionality
could not be reproduced. Point-to-point transport protocols
designed for censorship circumvention tend to have simple
designs, leading us to believe that Proteus may be useful to
program a number of protocols despite these limitations.

3 Proteus Examples

In this section, we show by example how an evader can spec-
ify and then easily modify encrypted network protocols us-
ing Proteus. We highlight salient elements of Proteus pro-
grams here and list the PSF source files in their entirety in
Appendix A.

3.1 Shadowsocks
As an example, we first describe the Shadowsocks [21] obfus-
cation protocol as implemented in Proteus. Our implementa-
tion is not designed to be interoperable with Shadowsocks—it
only has the same flow characteristics. To an observing third
party, Shadowsocks flows have no structure and are indistin-
guishable from a stream of random bytes. The Shadowsocks
protocol is fairly simple: each message consists of an en-
crypted length and an encrypted payload, where encryption is
performed using an authenticated encryption with associated
data (AEAD) scheme. AEAD ciphers simultaneously provide
encryption and authentication, with the encryption operation
outputting both a ciphertext and a tag, the latter of which is
used by the decryption function to authenticate the ciphertext.
Shadowsocks messages follow the format:

Enc. payload
length auth tag

Encrypted
payload length

2B 16B

Enc. payload
auth tag

Encrypted
payload

Var 16B

Specifying Shadowsocks in Proteus is straightforward. We
first define protocol message definitions for the encrypted
length (and tag) and encrypted payload (and tag). Separate
message definitions are necessary since the encrypted length
field needs to first be decrypted in order to determine how
many bytes are required for the payload. We specify these
message definitions as follows:

1 DEFINE EncLenFmt // encrypted length
2 { NAME: EncPayloadLen; TYPE: [u8; 2]; }
3 { NAME: EncPayloadLenTag; TYPE: [u8; 16]; };
4

5 DEFINE EncPayloadFmt // the payload
6 { NAME: EncPayload; TYPE: [u8; *]; }
7 { NAME: EncPayloadTag; TYPE: [u8; 16]; };

Listing 3: Message definitions for Shadowsocks
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Following the Shadowsocks specification, we use two bytes
for the encrypted payload length and 16 bytes for all tags. As
with Shadowsocks, we use the ChaCha20 stream cipher with
(16 byte) Poly1305 message authentication codes.

The PSF file also defines event handlers for the events
described in Table 1:

1 SET_HANDLER( EV_NET, evNetRead );
2 SET_HANDLER( EV_APP, evAppRead );
3 ...

The main operation of our Proteus-based Shadowsocks
implementation is described in the evNetRead() and
evAppRead() handlers (see § A.1 for their full descriptions).
evNetRead() computes the length of an EncLenFmt mes-
sage, 2+16 = 18 bytes, and calls pop() on Net(R) to read 18
bytes off of the network read buffer. The parse() function
then casts those bytes into an EncLenFmt message:

1 let encLen: Fields =
2 match parse(&EncLenFmt, &encLenBytes) {
3 (true, v) => v, ... };

Given the resulting message, the decrypt() function is
called to obtain the payload size, pl (in plaintext). The handler
then reads another pl bytes from Net(R) and calls parse() on
the returned bytes to obtain the EncPayloadFmt message:

1 let payload: Fields = match
2 parse(&EncryptedPayloadFmt, &encPayload) {
3 (true, v) => v, ... };

Because the length of the EncPayload field in the
EncPayloadFmt message is not known before receiving and
decrypting the encrypted payload length, the * size indicator
in the message definition is necessary (see Listing 3). This
tells the parse() function to first assign all other fields (here,
just the fixed-sized EncPayloadTag field) before assigning
the remaining bytes in the buffer to the EncPayload field.

Finally, the decrypt() function is called again to obtain
the plaintext payload. The decrypted payload is then pushed
to the App(W) buffer for reading by the application.

The evAppRead() event handler performs the mirror opera-
tions with respect to evNetRead(): it reads bytes from App(R)

(data sent by the application) and encrypts (1) the number
of bytes read, and (2) the read bytes, both using ChaCha20-
Poly1305. It then calls format() to construct the EncLenFmt
and EncPayloadFmt messages2:

1 let encLenSpec: [u8; *] = match format(&EncLenFmt,
2 &format![("EncPayloadLen", encLen),
3 ("EncPayloadLenTag", encLenTag) ] )
4 { (true,v) => v, ... };
5

6 let encPayloadSpec: [u8; *] =
7 match format(&EncryptedPayloadFmt,
8 &format![("EncPayload", encPayload),
9 ("EncPayloadTag", encPayloadTag) ])

10 { (true,v) => v, ... };

2The format![...] construct used in this example is syntactic sugar to
create a format object with the specified fields.

The format() function returns the byte-representation of
the messages, which are then pushed to the Net(W) buffer for
transport over the network.

3.2 Modifying Shadowsocks
Wu et al. recently exposed a number of heuristics used by
the Great Firewall (GFW) in China to detect and block Shad-
owsocks [27]. Essentially, the GFW looks for and blocks ap-
parently high-entropy connections that are not TLS or HTTP.
However, Wu et al. note that the GFW’s approach to blocking
Shadowsocks is brittle. In particular, connections are allowed
if the first 6 bytes of the first packet of a flow are all printable
characters (printable bytes are in the range 0x20–0x7E).

Modifying the Proteus implementation of Shadowsocks
to bypass GFW’s censorship is thus trivial. The EncLenFmt
message definition can be modified as follows:

1 DEFINE EncLenFmtV2
2 { NAME: FixedPreamble; TYPE: [u8; 6] }, // <-- New
3 { NAME: EncPayloadLen; TYPE: [u8; 2] },
4 { NAME: EncPayloadLenTag; TYPE: [u8; 16] };

where FixedPreamble will be populated with a 6 byte
alphanumeric string. Additionally, the pop() call in
evNetRead() needs to read 6 more bytes than in our original
Shadowsocks implementation. In total, expressing the mod-
ified Shadowsocks PSF file requires only a short patch (see
Listing 5 in § A.2).

Proteus makes prototyping other packet encoding strategies
easy, too. If instead of printable characters, the packet’s
ratio of 0s to 1s (the packet’s so-called popcount) should be
altered, a biased string could be inserted into the packet’s
fields. We posit that Proteus’s adaptability is well-suited
for the censorship arms race. The ability to easily modify
protocols’ structure enables evaders to quickly counter new
changes in behavior of the censorship system.

3.3 Noise
To further illustrate the language’s versatility, we express a
Noise-based [12] protocol in Proteus; see Listing 6 in § A.3.
Noise is a protocol framework that provides building blocks
for constructing secure cryptographic protocols. In Listing 6,
we present a Proteus-based implementation of a Noise pro-
tocol in which a client with knowledge of a server’s (e.g.,
bridge’s) public key performs a Diffie-Hellman exchange
(with server authentication) and derives an ephemeral key,
which it then uses to exchange messages via an AEAD cipher.
This corresponds to the NK handshake pattern as described in
the Noise specification [12].

For brevity, we omit a full explanation of our Noise-based
protocol, and instead highlight some of the core functionali-
ties that were expressed in Proteus. As shown in Listing 6, we
use built-in crypto primitives—namely, DH() and HMAC()—
to implement Noise’s key chaining and derivation algorithms.
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We also separate out the logic in the evNetRead() and
evAppRead() handlers based on whether the protocol is in the
handshake or data transmission phase. Much of the code in
Listing 6 is fairly formulaic and mostly consists of sequences
of calls to parse() and format(). In total, it took less than
4 hours to express a Noise-based protocol in Proteus.

4 Related Work

Programmable Obfuscation: Format-transforming encryp-
tion (FTE) is a programmable obfuscation system that takes a
regular expression as input and then modifies a data stream
such that it passes the regular expression [5]. A primary use-
case of FTE is to create a data stream that mimics the format
of well known application protocols such as HTTP. Although
FTE can modify a data stream to impose a defined structure,
it offers little control over protocol semantics or the statistical
properties of the obfuscated traffic.

Marionette extends FTE to improve the programmability of
protocol semantics and statistical traffic properties [6]. Sim-
ilar to Proteus, Marionette defines protocol state machines
(called models) which can capture the state of a channel be-
tween multiple rounds of communication and can drive re-
sponses to particular actions such as errors. Marionette uses
a domain-specific language to specify a series of templates
that will, as in FTE, insert the bytes necessary to impose a
defined structure on outgoing messages. However, this lan-
guage is not specified outside of the implementation of the
interpreter making it difficult even for domain experts to write
correct code using the language. Comparatively, the Proteus
language is specified and designed to be easy to write for both
domain experts and non-specialists. Furthermore, Marionette
is designed such that its language calls out to plugins written
in a standard programming language to implement important
data processing functionality, posing significant safety risks to
users and proxy operators. In contrast, the Proteus language
is intentionally limited to a core set of functions necessary to
implement common functionality, and this isolation improves
safety and reliability of both Proteus and the protocols it runs.
Finally, unlike Proteus, Marionette does not support multiple
simultaneous protocols and version upgrades.

Anti-censorship researchers activists have developed other
tools offering aspects of programmability [10, 22]; however,
these projects tend to lack formal documentation and maturity,
making a rigorous evaluation difficult.
Programmable Anonymous Communication: Flexible
Anonymous Networks (FAN) is a programmable network
design that separates the software architecture from deployed
functionalities [18, 19]. A FAN can be programmed by com-
piling functionalities (e.g., adding, removing, or modifying
hook functions) using LLVM into portable RISC-V object
files that get packaged and distributed as a plugin and then
loaded by network nodes and executed in a sandbox using

just-in-time compilation. This approach effectively changes
the code that runs inside of the anonymity network nodes.

Similar to FAN, Bento is an architecture that proposes
to use middleboxes to bring network function virtualization
to anonymity networks [17]. Rather than modifying Tor’s
internal functions as FAN does, Bento runs as a separate
process, and runs arbitrary user-defined functions in a secure
enclave while interacting with Tor using its control interface.

Like our approach, FAN and Bento seek to provide better
modularity to more quickly adapt to new requirements. How-
ever, they both raise significant security and trust questions
since a user or plugin programmer can cause arbitrary code
execution on network nodes. Our approach is more isolated
and measured, focusing on providing a small standard library
of functions that focus on censorship circumvention protocol
behavior rather than a fully general software architecture.

5 Discussion and Future Work

Proteus is compatible with several deployment models. In
coordinated systems like Tor, Proteus can enable the authori-
ties to quickly disseminate new circumvention protocols. In
loosely organized systems like Shadowsocks, Proteus could
foster an ecosystem of individual experimentation to evade
censorship rules as they appear in different locales.

Proteus could be seamlessly swapped into several existing
systems. For existing protocols that can be expressed in the
Proteus language, such as obfs4 and Shadowsocks, Proteus
can work in partial deployment at only the server or client
side. Moreover, on the server side, it can be used to simul-
taneously support improved circumvention techniques and
legacy clients who have not yet upgraded.

The safety of Proteus could make automatic updating desir-
able for systems that adopt it. Currently, in security-conscious
proxy systems like Tor, updates cannot be forced on proxy
operators to limit the risk of a malicious or mistaken devel-
oper. However, this limits the speed of the arms race to how
fast operators can be made to install upgrades with new eva-
sion strategies. Proteus safety features could make pushing
protocol updates no more objectionable than how the Tor
authorities currently push their hourly network consensuses.

Work currently ongoing in Proteus includes completing a
complete specification of the language, developing a proto-
type implementation, and testing it in target network environ-
ments. Possible improvements to its design include the ability
to create multiple TCP connections, support for UDP, and
providing more support for traffic shaping through padding
bytes and added delays. Another aspect of Proteus that may
be improved is error handling. Allowing Proteus protocols to
implement normalized or randomized responses to errors may
improve its resistance to detection via active probing [8].

8



Availability

Proteus is actively developed at the time of this work’s publi-
cation. The Proteus source code is maintained and updated at
the following link:
https://github.com/unblockable/proteus.
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Appendices

A Proteus Programs

This appendix contains source code listings for Proteus pro-
grams referred to in this work. Each program was syntac-
tically checked against the Proteus grammar given in Ap-
pendix C.

A.1 Shadowsocks
1 /*
2 * Event handlers
3 */
4 SET_HANDLER( EV_INIT, evInit );
5 SET_HANDLER( EV_NET, evNetRead );
6 SET_HANDLER( EV_APP, evAppRead );
7 SET_HANDLER( EV_TIMER, nullHandler );
8 SET_HANDLER( *, exitHandler ); // everything else goes to exitHandler
9

10 /*
11 * Message formats
12 */
13
14 // encrypted length
15 DEFINE EncLenFmt
16 { NAME: EncPayloadLen; TYPE: [u8; 2] },
17 { NAME: EncPayloadLenTag; TYPE: [u8; 16] };
18
19 // the payload
20 DEFINE EncryptedPayloadFmt
21 { NAME: EncPayload; TYPE: [u8; *] },
22 { NAME: EncPayloadTag; TYPE: [u8; 16] };
23
24 /*
25 * Global variables
26 */
27
28 GLOBALS {
29 let mut Key :[u8;32] = [0u8; 32];
30 // initializes nonces (counters) for incoming and outgoing traffic
31 let mut OutNonce :u64 = 0u64;
32 let mut InNonce :u64 = 0u64;
33 }
34
35 /*
36 * Event handlers
37 */
38
39 fn evInit() {
40 // grab key from environment variable
41 match getenv<[u8; 32]>("chacha20_key", &global.Key) {
42 (false, _) => panic(),
43 };
44 }
45
46
47 fn evNetRead() {
48 // compute size of the EncLenFmt frame
49 let encPayloadLenSize :u64
50 = get_field_size(&EncLenFmt, "EncPayloadLen");
51
52 let encPayloadLenTagSize :u64
53 = get_field_size(&EncLenFmt, "EncPayloadLenTag");
54
55 let expectedLen :u64 = encPayloadLenSize + encPayloadLenTagSize;
56
57 let blocking: bool = true;
58
59 // block until there are at least ‘expectedLen‘ bytes to read
60 let encLenBytes: [u8; *] = buffer_pop(&RB_net, expectedLen, blocking);
61
62 let encLen: Fields = match parse(&EncLenFmt, &encLenBytes) {
63 (true,v) => v,
64 (false,_) => {
65 buffer_close_all(); // close connection on error
66 return;
67 }
68 };
69
70 let encPayloadLen: [u8; 2] = [0u8; 2];
71 match getField<[u8; *]>(&encLen, "EncPayloadLen", &encPayloadLen) {
72 false => panic(),
73 };
74
75 let encPayloadLenTag: [u8; 16] = [0u8; 16];
76 match getField<[u8; *]>(&envLen, "EncPayloadLenTag", &encPayloadLenTag) {
77 false => panic(),
78 };
79
80 // decrypt returns (num_bytes,val) tuple
81 let (_, l) : (_, u64) = match decrypt<u64>(
82 "chacha20-poly1305",
83 &global.Key, // key
84 &encPayloadLen, // message
85 encPayloadLenSize, // message size
86 &global.InNonce, // nonce and (next line) tag

87 &encPayloadLenTag) {
88 (true,v) => v,
89 (false,_) => {
90 buffer_close_all(); // close connection on error
91 return;
92 }
93 };
94
95 global.InNonce = global.InNonce + 1u64;
96
97 // then, grab the encrypted payload and parse it
98 let encPayload: [u8; *] = buffer_pop(&RB_net, l, blocking);
99 let payload: Fields = match parse(&EncryptedPayloadFmt, &encPayload) {

100 (true,v) => v,
101 (false,_) => panic(),
102 };
103
104 let payload_buffer: BytesMut = get_buffer(65536u64);
105 let encPayload: [u8; *] = match getField<[u8; *]>(
106 &payload_buffer, "EncPayload", &payload_buffer) {
107 false => panic(),
108 };
109
110 let tag_buffer: BytesMut = get_buffer(16u64);
111 let encPayloadTag: [u8; *] = match getField<[u8; *]>(
112 &payload, "EncPayloadTag", &tag_buffer) {
113 false => panic(),
114 };
115
116 // and decrypt it
117 let (_, plaintext) : (_, [u8; *]) = match decrypt<[u8; *]>(
118 "chacha20-poly1305",
119 &global.Key, // key
120 &encPayload,
121 &encPayloadSize,
122 &global.InNonce,
123 &encPayloadTag)
124 {
125 (true,v) => v,
126 (false,_) => {
127 buffer_close_all(); // close connection on error
128 return;
129 }
130 };
131
132 global.InNonce = global.InNonce + 1u64;
133
134 // send the results to the app
135 buffer_push(&WB_app, &plaintext);
136 }
137
138
139 fn evAppRead() {
140 // grab data from buffer (from the application)
141 let l :u16 = buffer_length(&RB_app);
142 let data :[u8; *] = buffer_pop(&RB_app, l, false);
143
144 // encrypt the length
145 let (encLen, encLenTag): ([u8; 2], [u8; 16]) = match encrypt(
146 "chacha20-poly1305",
147 &global.Key,
148 &l,
149 2u64,
150 &global.OutNonce ) {
151 (true,ciphertext,tag) => (ciphertext, tag),
152 (false,_,_) => panic(),
153 };
154 global.OutNonce = global.OutNonce + 1u64;
155
156 // encrypt the payload
157 let (encPayload, encPayloadTag): ([u8; *], [u8; 16]) = match encrypt(
158 "chacha20-poly1305",
159 &global.Key,
160 &data,
161 l,
162 global.OutNonce ) {
163 (true,ciphertext,tag) => (ciphertext, tag),
164 (false,_,_) => panic(),
165 };
166
167 global.OutNonce = global.OutNonce + 1u64;
168
169 // produce the frames
170 let encLenSpec: [u8; *]= match format(&EncLenFmt,
171 &format![
172 ("EncPayloadLen", encLen),
173 ("EncPayloadLenTag", encLenTag)
174 ]
175 ) {
176 (true,v) => v,
177 (false,_) => panic(),
178 };
179
180 let encPayloadSpec: [u8; *] = match format(&EncryptedPayloadFmt,
181 &format![
182 ("EncPayload", encPayload),
183 ("EncPayloadTag", encPayloadTag),
184 ]
185 ) {
186 (true,v) => v,
187 (false,_) => panic(),
188 };
189
190 // send them on the wire
191 buffer_push(&WB_net, &encLenSpec);
192 buffer_push(&WB_net, &encPayloadSpec);
193 }
194
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195 fn nullHandler() {
196 }
197
198 fn exitHandler() {
199 exit(0u32);
200 }

Listing 4: PSF for Shadowsocks in AEAD mode

A.2 Modifying Shadowsocks to Bypass GFW
Censorship

Modifying the Proteus implementation of Shadowsocks (see
Listing 4) to bypass blocking by the GFW is straightforward.
Listing 5 describes the complete patch for adding a six byte
alphanumeric constant ("123456") to the beginning of Shad-
owsocks messages.

1 @@ -13,6 +13,7 @@
2
3 // encrypted length
4 DEFINE EncLenFmt
5 +{ NAME: FixedPreamble; TYPE: [u8; 6] },
6 { NAME: EncPayloadLen; TYPE: [u8; 2] },
7 { NAME: EncPayloadLenTag; TYPE: [u8; 16] };
8
9 @@ -45,6 +46,8 @@

10
11
12 fn evNetRead() {
13 + let fixed_preamble_size :u64
14 + = get_field_size(&EncLenFmt, "FixedPreamble");
15 // compute size of the EncLenFmt frame
16 let encPayloadLenSize :u64
17 = get_field_size(&EncLenFmt, "EncPayloadLen");
18 @@ -52,7 +55,8 @@
19 let encPayloadLenTagSize :u64
20 = get_field_size(&EncLenFmt, "EncPayloadLenTag");
21
22 - let expectedLen :u64 = encPayloadLenSize + encPayloadLenTagSize;
23 + let expectedLen :u64 = encPayloadLenSize +
24 + encPayloadLenTagSize + fixed_preamble_size;
25
26 let blocking: bool = true;
27
28 @@ -169,6 +173,7 @@
29 // produce the frames
30 let encLenSpec: [u8; *]= match format(&EncLenFmt,
31 &format![
32 + ("FixedPreamble", "123456"),
33 ("EncPayloadLen", encLen),
34 ("EncPayloadLenTag", encLenTag)
35 ]

Listing 5: Modifications to the Shadowsocks PSF (see List-
ing 4) to achieve reduced entropy

A.3 Noise
Noise [12] is a protocol framework and does not specify wire
formats. We adapt Noise to a “wire” protocol by prepending
a length field in front of every message.

Noise does not correspond to a particular protocol, and
instead is a framework for specifying secure protocols via
handshake patterns. We use the NK handshake pattern, which
is defined as:

NK:
← s (sent out-of-band)
· · ·
→ e,es
← e,ee

This corresponds to the case where the client knows apriori the
server’s public key (s) and uses it to perform a DH exchange
(with server authentication) with the server.

The corresponding Proteus definition file is presented in
Listing 6.

1 /**
2 * Event handlers
3 */
4 SET_HANDLER( EV_INIT, evInit );
5 SET_HANDLER( EV_NET, evNetRead );
6 SET_HANDLER( EV_APP, evAppRead );
7 SET_HANDLER( EV_TIMER, nullHandler );
8 SET_HANDLER( *, exitHandler ); // everything else goes to exitHandler
9

10
11 /*
12 * Message formats
13 */
14
15 // corresponds to -> e, es
16 DEFINE Handshake1
17 { NAME: InitiatorEphemeralKey; TYPE: [u8; 45] };
18
19 // corresponds to <- e, ee
20 DEFINE Handshake2
21 { NAME: EncResponderEphemeralKey; TYPE: [u8; 56] },
22 { NAME: EncResponderEphemeralKeyTag; TYPE: [u8; 16] };
23
24 // an encrypted message (after handshaking)
25 DEFINE EncryptedPayloadSpec
26 { NAME: PayloadSize; TYPE: u16 },
27 { NAME: EncPayload; TYPE: [u8; *] },
28 { NAME: EncPayloadTag; TYPE: [u8; 16] };
29
30
31 /*
32 * Global variables
33 */
34 GLOBALS {
35 let mut CompletedHandshake :bool = false;
36 let mut OutNonce :u64 = 0u64;
37 let mut InNonce :u64 = 0u64;
38 let mut IsInitiator :bool = false;
39 let mut ck :[u8;32] = [0u8; 32];
40 let mut k :[u8;32] = [0u8; 32];
41
42 // some constants we’ll need later
43 let byte01 :[u8;1] = [ 0x01; 1 ];
44 let byte02 :[u8;1] = [ 0x02; 1 ];
45
46 // key material
47 let mut EphemeralDHKeyPub :[u8;56] = [0u8; 56];
48 let mut EphemeralDHKeyPri :[u8;56] = [0u8; 56];
49 let mut ServerStaticDHKeyPub :[u8;56] = [0u8; 56];
50 let mut StaticDHKeyPub :[u8;56] = [0u8; 56];
51 let mut StaticDHKeyPri :[u8;56] = [0u8; 56];
52 }
53
54 /*
55 * Event handlers
56 */
57
58 fn evInit() {
59 // let’s figure out if we’re the initiator or responder
60 // by looking for the is_initiator environment variable
61
62 let mut tmp: [u8;1] = [0u8; 1];
63
64 global.IsInitiator = match getenv<[u8; 1]>("is_initiator", &tmp) {
65 (true,_) => true,
66 (false,_) => false
67 };
68
69 // initialize hash according to InitializeSymmetric(...) func from Noise
70 let h :[u8;32] = hash(sha256, "Noise_NK_25519_ChaChaPoly_SHA256");
71 global.ck = h;
72 global.k = h;
73
74 // compute an ephemeral key
75 (global.EphemeralDHKeyPub, global.EphemeralDHKeyPri) = genDHKeyPair(56u64);
76
77 match getenv<[u8; 56]>("server_pub", &global.ServerStaticDHKeyPub) {
78 (false,_) => panic(),
79 };
80
81 if global.IsInitiator == true {
82 // compute initial key by first doing DH...
83 let input_key_material :[u8;56]
84 = match DH(global.EphemeralDHKeyPri, global.ServerStaticDHKeyPub) {
85 (true,v) => v,
86 (false,_) => panic(),
87 };
88 // update the global key according to Noise HKDF() function
89 let temp_k :[u8;32] = hmac(sha256, global.ck, input_key_material);
90 global.ck = hmac(sha256, temp_k, global.byte01);
91 global.k = hmac(sha256, concatenate(global.ck,global.byte02));
92
93 } else {
94 // we’re the server, grab key pair from environment variable
95 match getenv<[u8;56]>("dhkey_pub", &global.StaticDHKeyPub) {
96 (false,_) => panic(),
97 };
98 match getenv<[u8;56]>("dhkey_pri", &global.StaticDHKeyPri) {
99 (false,_) => panic(),

100 };
101 }
102 }
103
104
105 fn evAppRead() {
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106 if !global.CompletedHandshake {
107 // before we do anything else, we need to complete the handshake
108
109 if global.IsInitiator {
110
111 // send Handshake1 message to responder
112 let handshake1Fields :Fields = create_fields();
113 set_field( &handshake1Fields,
114 "InitiatorEphemeralKey", global.EphemeralDHKeyPub);
115
116 let handshake1 :[u8; *] = match format(&Handshake1, &handshake1Fields) {
117 (true,v) => v,
118 (false,_) => panic(),
119 };
120
121 buffer_push( &WB_net, handshake1 );
122
123 // wait for response from responder
124 let handshake2KeySize :u64
125 = get_field_size(&Handshake2,"EncResponderEphemeralKey");
126 let handshake2TagSize :u64
127 = get_field_size(&Handshake2,"EncResponderEphemeralKeyTag");
128 let frameContents :[u8; *]
129 = match buffer_pop(&RB_net, handshake2KeySize+handshake2TagSize, true) {
130 (true,v) => v,
131 (false,_) => panic(),
132 };
133
134 // parse response (a handshake2 message)
135 let handshake2 :Fields = match parse(&Handshake2, frameContents) {
136 (true,v) => v,
137 (false,_) => {
138 buffer_close_all(); // close connection on error
139 return;
140 }
141 };
142
143 let encResponderEphemeralKey :BytesMut = get_buffer(64u64);
144
145 if !get_field<[u8; 56]>(&handshake2,
146 "EncResponderEphemeralKey", &encResponderEphemeralKey) {
147 buffer_close_all();
148 return;
149 };
150
151 let encResponderEphemeralKeyTag :BytesMut = get_buffer(32u64);
152
153 if !getField<[u8; 16]>(&handshake2,
154 "EncResponderEphemeralKeyTag", &encResponderEphemeralKeyTag) {
155 buffer_close_all();
156 return;
157 };
158
159 // decrypt to get the responder’s ephemeral key
160 let responderEphemeralKey :[u8; 56] = match decrypt(
161 "chacha20-poly1305",
162 global.k,
163 &encResponderEphemeralKey,
164 handshake2KeySize,
165 &global.InNonce,
166 &encResponderEphemeralKeyTag) {
167 (true,v) => v,
168 (false,_) => {
169 buffer_close_all();
170 return;
171 }
172 };
173
174 global.InNonce = global.InNonce + 1u64;
175
176 // update the global key according to Noise HKDF() function
177 let input_key_material :[u8;56] = responderEphemeralKey;
178 let temp_k :[u8;32] = hmac(sha256, global.ck, input_key_material);
179 global.ck = hmac(sha256, temp_k, global.byte01 );
180 global.k = hmac(sha256, global.ck, global.byte02 );
181
182 global.CompletedHandshake = true;
183
184 } else {
185
186 // we’re the responder, so we’ll wait for the initiator to send Handshake1
187 let handshake1KeySize :u64
188 = get_field_size(&Handshake1, "InitiatorEphemeralKey");
189
190 let frameContents : Bytes
191 = match buffer_pop(&RB_net, handshake1KeySize, true) {
192 (true,v) => v,
193 (false,_) => panic(),
194 };
195
196 // parse response (a handshake1 message)
197 let handshake1 :Fields = match parse(&Handshake1, frameContents ) {
198 (true,v) => v,
199 (false,_) => {
200 buffer_close_all();
201 return;
202 }
203 };
204
205 let initiatorPK :BytesMut = get_buffer(64u64);
206
207 if !get_field<[u8; 56]>(&Handshake1, "InitiatorEphemeralKey", &initiatorPK) {
208 buffer_close_all();
209 return;
210 };
211
212 // compute our first DH
213 let input_key_material :[u8;56]

214 = match DH(global.StaticDHKeyPri, initiatorPK) {
215 (true,v) => v,
216 (false,_) => panic(),
217 };
218 let temp_k :[u8;32] = hmac(sha256, global.ck, input_key_material);
219 global.ck = hmac(sha256, temp_k, global.byte01 );
220 global.k = hmac(sha256, global.ck, global.byte02 );
221
222 // send our ephemeral key, encrypted, to the initiator
223 let (encPayload, encPayloadTag) : ([u8; *], [u8; 16]) =
224 match encrypt(
225 "chacha20-poly1305",
226 &global.k,
227 &global.EphemeralDHKeyPub,
228 56u64,
229 &global.OutNonce ) {
230 (true,ciphertext,tag) => (ciphertext, tag),
231 (false,_,_) => panic(),
232 };
233
234 global.OutNonce = global.OutNonce + 1u64;
235
236 let handshake2Fields :Fields = create_fields();
237 set_field( &handshake2Fields,
238 "EncResponderEphemeralKey", encPayload );
239 set_field( &handshake2Fields,
240 "EncResponderEphemeralKeyTag", encPayloadTag );
241
242 let handshake2 :Bytes = match format(
243 &Handshake2, &handshake2Fields ) {
244 (true,v) => v,
245 (false,_) => panic(),
246 };
247
248 buffer_push( &WB_net, handshake2 );
249
250 // and compute our final global key
251 let input_key_material2 :[u8;56]
252 = match DH(global.EphemeralDHKeyPri, initiatorPK) {
253 (true,v) => v,
254 (false,_) => panic(),
255 };
256 let temp_k :[u8;32] = hmac(sha256,global.ck,input_key_material2);
257 global.ck = hmac(sha256,temp_k,global.byte01);
258 global.k = hmac(sha256, global.ck, global.byte02);
259
260 global.CompletedHandshake = true;
261 }
262 } else {
263 // handshake completed, so send data in AEAD
264
265 // get data from app
266 let l :u64 = buffer_length(&RB_app);
267 let data :Bytes = match buffer_pop(&RB_app, l, true) {
268 (true,v) => v,
269 (false,_) => panic(),
270 };
271
272 // encrypt the payload
273 let (encPayload, encPayloadTag): ([u8; *], [u8; 16]) = match encrypt(
274 "chacha20-poly1305",
275 &global.k,
276 &data,
277 l,
278 &global.OutNonce ) {
279 (true,ciphertext,tag) => (ciphertext, tag),
280 (false,_,_) => panic(),
281 };
282 global.OutNonce = global.OutNonce + 1u64;
283
284 // put the ciphertext in its frame
285 let encryptedPayloadFields :Fields = create_fields();
286 set_field( &encryptedPayloadFields, "PayloadSize", l );
287 set_field( &encryptedPayloadFields, "EncPayload", encPayload );
288 set_field( &encryptedPayloadFields, "EncPayloadTag", encPayloadTag );
289 let encPayloadSpec :Bytes
290 = match format(&EncryptedPayloadSpec, &encryptedPayloadFields) {
291 (true,v) => v,
292 (false,_) => panic(),
293 };
294
295 // and send it!
296 buffer_push( &WB_net, encPayloadSpec );
297 }
298 }
299
300
301 fn evNetRead() {
302 if !global.CompletedHandshake {
303 // before we do anything else, we need to complete the handshake
304
305 if global.IsInitiator {
306
307 // send Handshake1 message to responder
308 let handshake1Fields :Fields = create_fields();
309 set_field( &handshake1Fields,
310 "InitiatorEphemeralKey", global.EphemeralDHKeyPub);
311 let handshake1 :Bytes = match format(&Handshake1, &handshake1Fields) {
312 (true,v) => v,
313 (false,_) => panic(),
314 };
315 buffer_push( &WB_net, handshake1 );
316
317 // wait for response from responder
318 let handshake2KeySize :u64
319 = get_field_size(&Handshake2,"EncResponderEphemeralKey");
320 let handshake2TagSize :u64
321 = get_field_size(&Handshake2,"EncResponderEphemeralKeyTag");
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322 let frameContents :Bytes
323 = match buffer_pop(&RB_net, handshake2KeySize+handshake2TagSize, true) {
324 (true,v) => v,
325 (false,_) => panic(),
326 };
327
328 // parse response (a handshake2 message)
329 let handshake2 :Fields = match parse(&Handshake2, frameContents) {
330 (true,v) => v,
331 (false,_) => {
332 buffer_close_all(); // close connection on error
333 return;
334 }
335 };
336
337 let encResponderEphemeralKey :BytesMut = get_buffer(64u64);
338
339 if !get_field<[u8; 56]>(&handshake2,
340 "EncResponderEphemeralKey", &encResponderEphemeralKey) {
341 buffer_close_all();
342 return;
343 };
344
345 let encResponderEphemeralKeyTag :BytesMut = get_buffer(32u64);
346
347 if !getField<[u8; 16]>(&handshake2,
348 "EncResponderEphemeralKeyTag", &encResponderEphemeralKeyTag) {
349 buffer_close_all();
350 return;
351 };
352
353 // decrypt to get the responder’s ephemeral key
354 let responderEphemeralKey: [u8; *] = match decrypt(
355 "chacha20-poly1305",
356 global.k,
357 &encResponderEphemeralKey,
358 handshake2KeySize,
359 &global.InNonce,
360 &encResponderEphemeralKeyTag) {
361 (true,v) => v,
362 (false,_) => {
363 buffer_close_all();
364 return;
365 }
366 };
367
368 global.InNonce = global.InNonce + 1u64;
369
370 // update the global key according to Noise HKDF() function
371 let input_key_material :[u8;56] = responderEphemeralKey;
372 let temp_k :[u8;32] = hmac(sha256, global.ck, input_key_material);
373 global.ck = hmac(sha256, temp_k, global.byte01);
374 global.k = hmac(sha256, global.ck, global.byte02);
375
376 global.CompletedHandshake = true;
377
378 } else {
379
380 // we’re the responder, so we’ll wait for the initiator to send Handshake1
381 let handshake1KeySize :u64
382 = get_field_size(&Handshake1, "InitiatorEphemeralKey");
383
384 let frameContents :Bytes
385 = match buffer_pop(&RB_net, handshake1KeySize, true) {
386 (true,v) => v,
387 (false,_) => panic(),
388 };
389
390 // parse response (a handshake1 message)
391 let handshake1 :Fields = match parse(&Handshake1, frameContents ) {
392 (true,v) => v,
393 (false,_) => {
394 buffer_close_all();
395 return;
396 }
397 };
398
399 let initiatorPK :BytesMut = get_buffer(64u64);
400
401 if !get_field<[u8; 56]>(&Handshake1,"InitiatorEphemeralKey", &initiatorPK) {
402 buffer_close_all();
403 return;
404 };
405
406 // compute our first DH
407 let input_key_material :[u8;56]
408 = match DH(global.StaticDHKeyPri, initiatorPK) {
409 (true,v) => v,
410 (false,_) => panic(),
411 };
412
413 let temp_k :[u8; 32] = hmac(sha256, global.ck, input_key_material);
414 global.ck = hmac(sha256, temp_k, global.byte01 );
415 global.k = hmac(sha256, global.ck, global.byte02 );
416
417 // send our ephemeral key, encrypted, to the initiator
418 let (encPayload, encPayloadTag): ([u8; *], [u8; 16]) = match encrypt(
419 "chacha20-poly1305",
420 &global.k,
421 &global.EphemeralDHKeyPub,
422 56u64,
423 &global.OutNonce ) {
424 (true,ciphertext,tag) => (ciphertext, tag),
425 (false,_,_) => panic(),
426 };
427
428 global.OutNonce = global.OutNonce + 1u64;

429
430 let handshake2Fields :Fields = create_fields();
431 set_field( &handshake2Fields,
432 "EncResponderEphemeralKey", encPayload );
433
434 set_field( &handshake2Fields,
435 "EncResponderEphemeralKeyTag", encPayloadTag );
436
437 let handshake2 :Bytes = match format(
438 &Handshake2, &handshake2Fields ) {
439 (true,v) => v,
440 (false,_) => panic(),
441 };
442 buffer_push( &WB_net, handshake2 );
443
444 // and compute our final global key
445 let input_key_material2 :[u8;56]
446 = match DH(global.EphemeralDHKeyPri, initiatorPK) {
447 (true,v) => v,
448 (false,_) => panic(),
449 };
450 let temp_k :[u8;32] = hmac(sha256,global.ck,input_key_material2);
451 global.ck = hmac(sha256,temp_k,global.byte01);
452 global.k = hmac(sha256, global.ck, global.byte02);
453
454 global.CompletedHandshake = true;
455 }
456 } else {
457 // handshake completed, so grab the data off of the wire
458 let payloadSizeLen :u64
459 = get_field_size(&EncryptedPayloadSpec,"PayloadSize");
460 let encPayloadTagLen :u64
461 = get_field_size(&EncryptedPayloadSpec,"EncPayloadTag");
462
463 let l :u16 = buffer_peek(&RB_net, payloadSizeLen);
464
465 let frameContents :Bytes = match buffer_pop(
466 RB_net,
467 payloadSizeLen + l + encPayloadTagLen,
468 true) {
469 (true,v) => v,
470 (false,_) => panic(),
471 };
472
473 // parse it
474 let encryptedPayload: Fields = match parse(&EncryptedPayloadSpec, &frameContents ) {
475 (true,v) => v,
476 (false,_) => {
477 buffer_close_all(); // close connection on error
478 return;
479 }
480 };
481 let encPayload: BytesMut = get_buffer(65535u64);
482 if !get_field<[u8; *]>(&EncryptedPayloadSpec, "EncPayload", &encPayload )
483 {
484 panic();
485 };
486
487 let encPayloadTag: BytesMut = get_buffer(32u64);
488 if !getField<[u8; 32]>(&EncryptedPayloadSpec, "EncPayloadTag", &encPayloadTag ) {
489 panic();
490 };
491
492 // decrypt returns (num_bytes,val) tuple
493 let plaintext :[u8; *] = match decrypt(
494 "chacha20-poly1305",
495 &global.k,
496 &encPayload,
497 l,
498 &global.InNonce,
499 &encPayloadTag) {
500 (true,v) => v,
501 (false,_) => {
502 buffer_close_all(); // close connection on error
503 return;
504 }
505 };
506 global.InNonce = global.InNonce + 1u64;
507
508 // send the results to the app
509 buffer_push( &WB_app, plaintext );
510 }
511 }
512
513
514 fn nullHandler() {
515 }
516
517 fn exitHandler() {
518 exit(0u32);
519 }

Listing 6: PSF for the NK Noise handshake pattern

B Proteus Standard Library and Runtime

This appendix contains details regarding the functions pro-
vided by the Proteus standard library and their implementa-
tion.
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B.1 Functionality
1 SECTION - I/O RELATED
2 ================================================================================
3
4 NAME
5
6 buffer_length - get number of bytes available in a buffer
7
8 SYNOPSIS
9

10 fn buffer_length(b: &Buffer) -> usize;
11
12 DESCRIPTION
13
14 Gets the number of bytes present in a buffer.
15
16 RETURN VALUE
17
18 The number of bytes present in the buffer. No error value is specified.
19
20 --------------------------------------------------------------------------------
21
22 NAME
23
24 buffer_peek - get a copy of n bytes from a buffer without removing them
25
26 SYNOPSIS
27
28 fn buffer_peek(b: &ReadBuffer, n: usize) -> (bool, Bytes);
29
30 DESCRIPTION
31
32 Gets the first n bytes of data present in the buffer. The buffer is not
33 modified as a result of this operation.
34
35 RETURN VALUE
36
37 buffer_peek() returns a pair of values. The first element of the pair
38 indicates if the full peek could be performed (true if so, otherwise the value
39 is false). The second element contains the copied data from the buffer
40 (with length equal to the minimum of n and buffer_length(b)).
41
42 --------------------------------------------------------------------------------
43
44 NAME
45
46 buffer_pop - removes bytes from a buffer
47
48 SYNOPSIS
49
50 fn buffer_pop(b: &mut ReadBuffer, n: usize, blocking: bool) -> (bool, Bytes);
51
52 DESCRIPTION
53
54 Removes the first n bytes from buffer b. If there are fewer than n bytes
55 available, this function does not modify the buffer. If the blocking parameter
56 is set to true, this function blocks until there is n bytes of data in the
57 buffer.
58
59 RETURN VALUE
60
61 For the first return value, returns true if the pop was successful (i.e., at
62 least n bytes were removed from the buffer); false otherwise. The second
63 argument returns the bytes that were removed.
64
65 --------------------------------------------------------------------------------
66
67 NAME
68
69 buffer_push - adds bytes to a buffer.
70
71 SYNOPSIS
72
73 fn buffer_push(b: &mut WriteBuffer, data: Bytes) -> bool;
74
75 DESCRIPTION
76
77 Adds the input data to the buffer, if there is enough room in the buffer.
78 Otherwise, the buffer is not modified.
79
80 RETURN VALUE
81
82 True if the data was successfully added to the buffer; false otherwise.
83
84 --------------------------------------------------------------------------------
85
86 NAME
87
88 buffer_close - close the connection associated with a buffer.
89
90 SYNOPSIS
91
92 fn buffer_close(b: &mut Buffer);
93
94 DESCRIPTION
95
96 Closes the connection associated with the given buffer. This operation is
97 analogous to calling close on a buffer.
98
99 RETURN VALUE

100
101 N/A
102
103 --------------------------------------------------------------------------------
104
105 NAME

106
107 buffer_close_all - closes all connections
108
109 SYNOPSIS
110
111 fn buffer_close_all();
112
113 DESCRIPTION
114
115 Equivalent to calling:
116
117 ‘‘‘
118 buffer_close(rb_app);
119 buffer_close(rb_net);
120 buffer_close(wb_app);
121 buffer_close(wb_net);
122 ‘‘‘
123
124 RETURN VALUE
125
126 N/A
127
128 --------------------------------------------------------------------------------
129
130
131 SECTION - UTILITY FUNCTIONS
132 ================================================================================
133
134 NAME
135
136 getenv - gets an environment variable
137
138 SYNOPSIS
139
140 fn getenv<T>(name: &str, value: &mut T) -> bool;
141
142 DESCRIPTION
143
144 Gets en environment variable of type T. The value is stored in the ‘value‘
145 argument if the variable is defined and can be cast to type T.
146
147 RETURN VALUE
148
149 Returns true if the environment variable was successfully stored in the value
150 argument; false otherwise.
151
152 --------------------------------------------------------------------------------
153
154 NAME
155
156 get_random_bytes - generates a number of random bytes
157 (not suitable for cryptographic use)
158
159 SYNOPSIS
160
161 fn get_random_bytes(n: usize) -> Bytes;
162
163 DESCRIPTION
164
165 Generates n uniformly random bytes and returns them. The bytes are not
166 necessarily cryptographically strong.
167
168 RETURN VALUE
169
170 The n randomly sampled bytes.
171
172 --------------------------------------------------------------------------------
173
174 NAME
175
176 log - logs a string
177
178 SYNOPSIS
179
180 fn log(line: &str);
181
182 DESCRIPTION
183
184 Writes the input line out to the system log (defined as stderr).
185
186 RETURN VALUE
187
188 N/A
189
190 --------------------------------------------------------------------------------
191
192 NAME
193
194 panic - exits the program due to an error
195
196 SYNOPSIS
197
198 fn panic();
199
200 DESCRIPTION
201
202 Closes the program and network connections associated with the program
203
204 RETURN VALUE
205
206 N/A
207
208 --------------------------------------------------------------------------------
209
210 NAME
211
212 exit - exits the program cleanly
213
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214 SYNOPSIS
215
216 fn exit(exit_code: u32);
217
218 DESCRIPTION
219
220 Closes the program and network connections associated with the program,
221 returning the specified exit code.
222
223 RETURN VALUE
224
225 N/A
226
227 --------------------------------------------------------------------------------
228
229 NAME
230
231 arm_timer - adds a timer event to the queue
232
233 SYNOPSIS
234
235 fn arm_timer(k: u8, t: usize);
236
237 DESCRIPTION
238
239 Creates a timer with number k that expires t seconds from the calling time.
240 If called with a number of a timer that was already set, this function resets
241 the timer.
242
243 RETURN VALUE
244
245 N/A
246
247 --------------------------------------------------------------------------------
248
249 NAME
250
251 disarm_timer - disables a set timer
252
253 SYNOPSIS
254
255 fn disarm_timer(k: u8);
256
257 DESCRIPTION
258
259 Disables the kth timer, if it was previously armed. Otherwise, this function
260 has no effect.
261
262 RETURN VALUE
263
264 N/A
265
266 --------------------------------------------------------------------------------
267
268 NAME
269
270 get_timer - get the number of the last timer that expired
271
272 SYNOPSIS
273
274 fn get_timer() -> u8;
275
276 DESCRIPTION
277
278 On a timer expired event, this function can be used to get the number of the
279 timer that expired.
280
281 RETURN VALUE
282
283 The number of the last timer that expired.
284
285 --------------------------------------------------------------------------------
286
287 NAME
288
289 concatenate - join two byte objects together
290
291 SYNOPSIS
292
293 fn concatenate(b1: &Bytes, b2: &Bytes) -> Bytes;
294
295 DESCRIPTION
296
297 The output is a copy of b1 and b2 joined together in sequence.
298
299 RETURN VALUE
300
301 b1 || b2
302
303 --------------------------------------------------------------------------------
304
305 NAME
306
307 get_buffer - gets a new mutable buffer
308
309 SYNOPSIS
310
311 fn get_buffer(capacity: usize) -> BytesMut;
312
313 DESCRIPTION
314
315 Returns an empty BytesMut container with the specifier capacity.
316
317 RETURN VALUE
318
319 An empty BytesMut container.
320
321 --------------------------------------------------------------------------------

322
323
324 SECTION - PROTOCOL MESSAGE MANIPULATION
325 ================================================================================
326
327 NAME
328
329 create_fields - create a new empty field object
330
331 SYNOPSIS
332
333 create_fields() -> Fields;
334
335 DESCRIPTION
336
337 Creates an initialized, empty Fields object. The Fields object is used to
338 store and retrieve message field values by name for message formatting.
339
340 RETURN VALUE
341
342 A new Fields object.
343
344 --------------------------------------------------------------------------------
345
346 NAME
347
348 set_field - set a field value
349
350 SYNOPSIS
351
352 set_field<T>(fields: &mut Fields, name : &str, value: T);
353
354 DESCRIPTION
355
356 Sets the field with the given name to by of type T and the given value.
357
358 RETURN VALUE
359
360 N/A
361
362 --------------------------------------------------------------------------------
363
364 NAME
365
366 get_field - get a field value
367
368 SYNOPSIS
369
370 get_field<T>(fields: &Fields, name: &str, value: &mut T) -> bool;
371
372 DESCRIPTION
373
374 Gets the value of the field with the specified name and type and stores it in
375 the value argument. Fails on type mismatch or if the name was not set.
376
377 RETURN VALUE
378
379 true if the value fetch was successful; false otherwise.
380
381 --------------------------------------------------------------------------------
382
383 NAME
384
385 get_field_size - gets the size of a field in a message format.
386
387 SYNOPSIS
388
389 get_field_size<T>(format: &MsgFormat, name: &str) -> usize;
390
391 DESCRIPTION
392
393 Returns the statically-defined size of a field with the given name.
394
395 RETURN VALUE
396
397 The size of the field, or 0 if the field was not present or defined to have
398 variable size.
399
400 --------------------------------------------------------------------------------
401
402 NAME
403
404 format - try to create a formatted byte string
405
406 SYNOPSIS
407
408 format(format: &MsgFormat, fields: &Fields) -> (bool, Bytes);
409
410 DESCRIPTION
411
412 Attempts to format a byte string according to the specified message format and
413 included field values.
414
415 RETURN VALUE
416
417 (true, b) for a formatted byte string b if formatting was successful.
418 (false, empty bytes) if formatting was not successful.
419
420 --------------------------------------------------------------------------------
421
422 NAME
423
424 parse - try to parse a byte string into the specified fields.
425
426 SYNOPSIS
427
428 parse(format: &MsgFormat, data: &bytes) -> (bool, Fields);
429
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430 DESCRIPTION
431
432 Inverse function of format. Organizes the byte string into fields that can
433 be retrieved with the get_field function.
434
435 RETURN VALUE
436
437 For the first return value, true if the message could be successfully parsed;
438 false otherwise. If the parse was successful, the returned Fields object will
439 contain the parsed fields. Otherwise, it will be empty.
440
441 --------------------------------------------------------------------------------
442
443 SECTION - CRYPTOGRAPHIC FUNCTIONS
444 ================================================================================
445
446 We assume that ProtoSpec supports a standard set of cryptographic
447 functionalities, for example, those specified in the RustCrypto library
448 <https://github.com/RustCrypto>.

Listing 7: Listing of standard library functions

B.2 Implementation Details
Here we give brief, disparate remarks on implementation
details related to the standard library and Proteus runtime.

Proteus programs must run using a fixed amount of memory
for execution safety; however, some of the standard library
functions have seemingly dynamic behavior. The standard
library implementation must either (1) statically allocate all
needed memory at initialization, or (2) monitor used memory,
reallocating when needed but never exceeding a threshold.

Some standard library functions have the capability to
block execution. Specifically, the network I/O function
buffer_pop() exposes a parameter that causes execution
to block until data is received. Blocking behavior is some-
what at odds with Proteus’s event-driven model; we assume
that in the case of buffer_pop() that the blocking call “inter-
cepts” incoming EV-NET events out-of-order. More general
issues still exist, for example, if a connection is closed during
a blocking call, which may lead to a deadlock. We are still ex-
ploring ways to achieve a balance between different network
programming paradigms that leads to easy programming.

C Proteus Grammar

The parsing expression grammar (PEG) [7] recognizing the
Proteus language is given in Listing 8. The grammar is written
for the pest library [13], which is a Rust package used for
implementing performant parsers from PEGs.

1 WHITESPACE = _{ " " | "\t" | NEWLINE }
2 COMMENT = _{ "//" ~ (!"\n" ~ ANY)* | BLOCK_COMMENT }
3 BLOCK_COMMENT = _{ "/*" ~ (!("*/") ~ ANY)* ~ "*/" }
4
5 identifier = @{ (("_"|ASCII_ALPHA)~("_"|ASCII_ALPHANUMERIC)*) }
6 dotted_identifier = { identifier ~ ("." ~ identifier)* }
7 compound_identifier = { "(" ~ dotted_identifier ~ ("," ~ dotted_identifier)+ ~ ")" }
8 basic_or_compound_identifier = { dotted_identifier | compound_identifier }
9

10 numeric_type = { "u8" | "u16" | "u32" | "u64" | "i8" | "i16" | "i32" | "i64" }
11 basic_type = { numeric_type | "bool" | "char" }
12 concrete_array_type = { "[" ~ type ~ ";" ~ numeric_literal ~ "]" }
13 dynamic_array_type = { "[" ~ type ~ ";" ~ "*" ~ "]" }
14 flexible_array_type = { "[" ~ type ~ ";" ~ disj ~ "]" }
15 array_type = { concrete_array_type | dynamic_array_type }
16 custom_type = { identifier }
17 type = { basic_type | array_type | custom_type }
18 compound_type = { "(" ~ type ~ ("," ~ type)+ ~ ")" }
19 basic_or_compound_type = { type | compound_type }
20
21 template_type = { "<" ~ basic_or_compound_type ~ ("," ~ basic_or_compound_type)* ~ ">" }
22
23 numeric_literal = @{ ASCII_DIGIT+ }
24 hex_literal = @{ "0x" ~ ASCII_HEX_DIGIT+ }
25 typed_numeric_literal = ${ hex_literal | (numeric_literal~numeric_type) }
26
27 string_literal = ${ "\"" ~ inner ~ "\"" }
28 inner = @{ char* }
29 char = {

30 !("\"" | "\\") ~ ANY
31 | "\\" ~ ("\"" | "\\" | "/" | "b" | "f" | "n" | "r" | "t")
32 | "\\" ~ ("u" ~ ASCII_HEX_DIGIT{4})
33 }
34
35 basic_literal = { "true" | "false" | typed_numeric_literal | string_literal
36 | numeric_literal}
37
38 array_literal = { "[" ~ literal ~ ";" ~ numeric_literal ~ "]" }
39 literal = { basic_literal | array_literal | compound_literal }
40 compound_literal = { "(" ~ literal ~ ("," ~ literal)+ ~ ")" }
41 basic_or_compound_literal = { basic_literal | compound_literal }
42
43 function_literal = { identifier ~ template_type? ~ (("(" ~ disj? ~ ")") | compound_disj) }
44
45 loc = { (dotted_identifier ~ "[" ~ disj ~ "]") | basic_or_compound_identifier }
46
47 disj = { (conj ~ ("||" ~ conj)*) }
48 compound_disj = { "(" ~ disj ~ ("," ~ disj)+ ~ ")" }
49 basic_or_compound_disj = { disj | compound_disj }
50 conj = { bit_or ~ ("&&" ~ bit_or)* }
51 bit_or = { bit_xor ~ ("|" ~ bit_xor)* }
52 bit_xor = { bit_and ~ ("^" ~ bit_and)* }
53 bit_and = { equal ~ ("&" ~ equal)* }
54 equal = { rel ~ (("==" | "!=") ~ rel)* }
55 rel = { bit_shift ~ ( ( "<=" | "<" | ">=" | ">" ) ~ bit_shift)* }
56 bit_shift = { sum ~ (("<<" | ">>" ) ~ sum)* }
57 sum = { product ~ (("+" | "-") ~ product)* }
58 product = { unary ~ (("*" | "/" | "%") ~ unary)* }
59 unary = { ("&" ~ unary) | ("!" ~ unary) | ("-" ~ unary) | factor }
60 factor = { function_literal | format_comprehension | "(" ~ disj ~ ")" | loc | literal }
61
62 block = { "{" ~ (stmt ~ ";")* ~ (stmt ~ ";"?)? ~ "}" }
63
64 match_arm = {
65 (basic_or_compound_literal|basic_or_compound_identifier) ~
66 "=>" ~ (basic_or_compound_disj|block)
67 }
68
69 match_stmt = { "match" ~ basic_or_compound_disj ~
70 "{" ~ match_arm ~ ("," ~ match_arm)* ~ ","? ~ "}"
71 }
72
73 if_stmt = { "if" ~ basic_or_compound_disj ~ block ~
74 ("else" ~ "if" ~ basic_or_compound_disj ~ block)* ~
75 ("else" ~ block)?
76 }
77
78 assignment_rhs = { if_stmt | match_stmt | block | basic_or_compound_disj }
79
80 assignment_stmt = { (loc ~ "=" ~ assignment_rhs ) }
81 decl_stmt = { "let" ~ "mut"? ~ basic_or_compound_identifier ~
82 ":" ~ basic_or_compound_type ~ ("=" ~ assignment_rhs)? }
83
84 return_stmt = { "return" ~ basic_or_compound_disj? }
85
86 format_tuple = { "(" ~ string_literal ~ "," ~ basic_or_compound_disj ~ ")" }
87
88 format_comprehension = {
89 "format!" ~ "[" ~ format_tuple ~ ("," ~ format_tuple)* ~ ","? ~ "]"
90 }
91
92 for_stmt = {
93 "for" ~ identifier ~ "in" ~ numeric_literal ~ ".." ~ "="? ~ numeric_literal ~
94 block
95 }
96
97 stmt = {
98 | decl_stmt
99 | assignment_stmt

100 | if_stmt
101 | match_stmt
102 | for_stmt
103 | return_stmt
104 | block
105 | basic_or_compound_disj
106 }
107
108
109 handler_stmt = {
110 "SET_HANDLER" ~ "(" ~ ("*" | identifier) ~ "," ~ identifier ~ ")"
111 }
112
113 handler_part = { (handler_stmt ~ ";")* }
114
115 msg_format_part = { (msg_format_stmt ~ ";")* }
116 msg_field_name = { "NAME" ~ ":" ~ identifier }
117 msg_field_type = { "TYPE" ~ ":" ~ (basic_type | array_type | flexible_array_type) }
118 msg_field = { "{" ~ msg_field_name ~ ";" ~ msg_field_type ~ "}" }
119 msg_format_stmt = { "DEFINE" ~ identifier ~ msg_field ~ ("," ~ msg_field)* }
120
121 global_part = { ("GLOBALS" ~ "{" ~ (decl_stmt ~ ";")* ~ "}")? }
122
123 fn_def = { "fn" ~ identifier ~ "(" ~ ")" ~ block }
124 fn_part = { fn_def* }
125
126 psf = {
127 SOI ~
128 handler_part ~
129 msg_format_part ~
130 global_part ~
131 fn_part ~
132 EOI
133 }

Listing 8: Parsing expression grammar recognizing the Pro-
teus language.
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