
On PAR for Attack

Chris Arnold
carnold@cs.umn.edu

Rob Jansen
jansen@cs.umn.edu

Zi Lin
lin@cs.umn.edu

James Parker
jparker@cs.umn.edu

May 17, 2009

Abstract

In The Onion Router (TOR) system, anonymity is
provided by router services run by TOR users who
volunteer their computational resources. Scalability
concerns stem from the TOR design because volun-
teers lack an incentive to participate. A payment
scheme has been previously introduced which aims
at providing economic incentives for volunteers in
hopes of increasing both reliability of and partici-
pation in TOR. We show that this payment scheme
breaks sender - receiver anonymity through a traffic
analysis intersection attack and is also vulnerable to
traffic injection attacks, enabling TOR exit nodes to
unnoticably cause an increase in traffic, and there-
fore payments, from the client. We simulate our in-
tersection attack on the payment scheme and discuss
directions for an improved design.

1 Introduction

Just as the Internet is playing an increasingly larger
role in our daily lives, so will privacy play a larger role
on the Internet. Traffic analysis allows governments
and Internet service providers (ISPs) to monitor In-
ternet usage and link users to their actions online.
Traffic analysis is performed by monitoring the path
between the user and network services and monitor-
ing the types of traffic the user is sending. Therefore
Internet users can be sure that their actions are not
private. Anonymous systems, on the other hand, pro-
tect privacy by preventing linkability of users to their
actions on the Internet. There are many situations
where anonymity is important, including posting to
online support groups and exchanging highly sensi-
tive financial information. Governments and corpo-
rations might be interested in protecting their agents
and employees by providing the capability of anony-
mous network traffic [1]. Users in countries where
the government restricts access to certain websites
might rely on anonymous communication to prevent
linkability of their Internet usage. For most people,

anonymity is important for maintaining personal se-
curity on the Internet.

When openly transmitting on the Internet, a large
amount of information can be inferred even if the
data being transmitted is hidden. An adversary can
infer much information just by monitoring when and
where a user sends data packets. Traffic analysis is
continuously being performed by ISPs nationwide.
For example, both the Chinese and British govern-
ments have been known to block wikipedia articles
from their citizens [3, 2]. Traffic analysis attacks are
still possible, even when using anonymous systems
like TOR [11]. The TOR system consists of routers
that anonymously transport data for clients. While
a large number of attacks on TOR [13, 14, 17, 27]
are known to gain various levels of knowledge about
the client, increasing the number of users will provide
greater diversity and security for TOR.

TOR is currently free to download and use [1].
As such, it relies on volunteers to run routers that
provide anonymous transports for clients. If there
were not enough routers available for TOR clients to
use, the system would become impractical. It can
be argued that the ratio of TOR routers to TOR
clients will be maintained as new users join the sys-
tem. However, this argument is weak because there
is no guarantee that new users will be as motivated
or invested in TOR as current users running routers,
especially considering there is no current incentive to
run routers. Additionally, the initial users of a sys-
tem have more experience, investment, and are gen-
erally more involved in the system than new users,
and therefore would be more likely to contribute to
the system. As a result of the uncertainty of these
arguments, the scalability of TOR is a great concern.
A payment scheme was developed in order to pro-
vide incentives for routers contributing to TOR in
the hopes of boosting the number of routers in the
system. PAR [5] is a hybrid payment scheme that in-
cludes the distribution of anonymous payments and
identity-bound payments to routers providing service
for TOR clients. PAR is described further in sec-
tion 3.

1

In the PAR protocol, there is a period of time in
which the TOR routers will hold onto their coins be-
fore depositing them into the bank. This results in
a trade-off between anonymity and double spending
detection [20]. Routers can not simply deposit and
verify coins in real time because of efficiency and do-
ing so reveals too much timing information to the
bank [5]. This timing information can be used to re-
construct the TOR circuits that were used at given
time intervals. On the other hand, holding onto the
coins for too long will allow more double spending
without detecting cheaters. It has been shown that
this double spending can be bounded to an accept-
able amount for a single user [5]. However, if a group
of colluding cheaters got together and double spent
the same coin at the same time, the double spending
amount increases drastically. This is a fundamental
flaw in the PAR protocol, and our goal is to show
that this is in fact a real problem and that a better
design can be achieved.

The remainder of this paper is outlined as follows.
In section 2 we discuss the origin of, and how sim-
ilar systems provide, anonymity and discuss several
attacks against such systems using a variety of traf-
fic analysis methods. We also discuss electronic pay-
ments similar to those used in PAR. Section 3 pro-
vides an overview of the PAR payment scheme as
applied to the TOR system. Section 4 outlines our
attacks on PAR. Section 5 describes our TOR and
PAR simulation design and provides a discussion of
our simulated attack results. In section 6 we discuss
an improved payment scheme, using online double
spending detection, to work within TOR. Finally, we
conclude in section 7.

2 Related Work

Past research associated with this work is focused
around the two general areas of anonymity and elec-
tronic payments. We provide insight into these areas
below.

2.1 Anonymity

The term “anonymity” refers to the unlinkability of
identifying information to the elements of an anony-
mous set. Anonymous networks on the Internet aim
to provide anonymity by not disclosing identifying in-
formation, such as name, address, or IP address, to
either party during electronic communication. The
goal of anonymity is to conceal who is communicating
with whom. Anonymity on the Internet is challeng-
ing because communication, even anonymous forum

posts, involves IP addresses which can be used to
identify a user.

In recent years, there has been significant research
into anonymous networks. Most ideas rely on mixing,
introduced by Chaum et. al. [10]. The mixing con-
cept involves hiding communication between partici-
pants of a system as well as the content of that com-
munication. A more efficient system related to mix-
ing is Crowds [23]. Crowds is an anonymous system
that relies on the notion of “blending into a crowd”.
Requests are forwarded at random so that no mem-
ber of the crowd can determine with absolute cer-
tainty the origin of a request. Thus, sender-receiver
unlinkability is maintained. A benefit of distributing
requests randomly to members of the crowd is the sys-
tem will scale to a large number of users. However,
encryption is not used between links in the system,
so active and passive traffic analysis attacks are pos-
sible. Web MIXes [7] extended the idea of mixing to
web-based communication, providing unobservability
and anonymity of Internet access. One of the im-
portant additions in web mixes was the inclusion of
constant dummy traffic between mixes and between
clients and mixes. This dummy traffic is indistin-
guishable from real client requests and aids in the
prevention of traffic analysis attacks against the sys-
tem. The problem with this approach is that it results
in extremely high overhead as each client using the
system is continuously sending mostly unnecessary
traffic. MorphMix [24], another web-based mixing
system, eliminated the need for central mix servers
by requiring that each user in the P2P network be a
client and mix and the same time. The strength of the
MorphMix system lies in its distributed architecture
and its encryption scheme. Morphmix eliminated the
use of dummy traffic, claiming it unnecessary due to
the size and dynamism of the network. Instead of
dummy traffic, they used ideas from Onion Rout-
ing [22, 28] including multiple encryptions through
an anonymous tunnel to provide strong end-to-end
encryption.

TOR [11] is a system similar to MorphMix. TOR,
a low latency network that provides anonymous data
transfer, was developed in an attempt to improve
anonymity and security on the Internet. The TOR
system combines the ideas of mixing and anonymous
proxy servers. TOR was designed to be a usable low-
latency system, therefore it does not include mixing
(batching messages) or traffic shaping. TOR consists
of clients and routers and uses the Onion Routing
overlay network design where clients encrypt traffic
in several onion “layers” and send it through a col-
lection of routers. This collection of routers is known
as a circuit. Each router peels off its layer of the onion

2

through decryption and forwards the data to the next
router in the circuit. The last router in the circuit
will send the traffic to the destination specified by
the client. Each router in the circuit will only know
its predecessor and successor in the path from sender
to receiver thus preventing sender-receiver linkablil-
ity. Moreover, since the actual data being sent to
the receiver is encrypted several times, only the last
router in the circuit will know its content. Traffic
analysis, although still possible (see below), is com-
plicated by having each router in the system service
multiple circuits at the same time.

There have been several attacks developed against
these systems using a variety of traffic analysis meth-
ods [13, 6, 17, 14, 18, 21, 27]. A traffic analysis at-
tack against TOR is described in [17] where timing
can be used to leak information about the identity of
connections. TOR does not claim to provide protec-
tion against global adversaries, however, the attack
can be performed by relatively weak adversaries us-
ing the fact that the traffic volume of a stream of
data traveling through a TOR router influences the
latency of other data streams traveling through the
same router. A mitigation strategy for this attack
involves the use of stochastic fair queuing (SFQ) [15].
In SFQ, resources are fairly distributed over the cir-
cuits run by a node so that each queue receives a fair
portion of throughput even if it has no active circuits
(similar to dummy traffic.) This technique was shown
to be effective at mitigating the clogging attack on the
MorphMix P2P anonymity scheme. Traffic analysis
strategies and mitigation techniques are important to
consider when developing and analyzing protocols for
anonymous systems.

2.2 Electronic Payments

Another important area is that of electronic pay-
ments, or e-cash. Some of the more important
schemes is in the area of anonymous e-cash [4, 9],
as ideas from these schemes can be carried for-
ward into anonymous systems like TOR. It is im-
portant that anonymous systems do not use payment
schemes that would reveal any information beyond
what is already known by participants of the sys-
tem. Chaum’s scheme [9] provides untraceable and
transferable coins that reveal cheaters who copy and
double spend a coin. This scheme provides com-
plete anonymity except in the case of double spend-
ing, which gives users an incentive to stay honest.
An efficiency problem exists since in order to pro-
vide this double spending verification, the bank must
be involved both in issuing the coin and again when
the coin is spent (and immediately deposited by the

user.) To limit the bank’s role and increase efficiency,
systems have been developed to allow the withdraw
of multiple coins at once [8] and allow coins to be
transferred several times before requiring deposit to
the bank [19]. As a result of these schemes, a new
double spending problem was created. When coins
are not immediately verified, a time window exists in
which cheaters can double spend coins without get-
ting caught. Another system with the same prob-
lem was developed [12] that works like cashier checks
where the bank is responsible for accounting and, to
keep the system efficent, immediate deposit of the
“checks” is not required. Other schemes [26, 16] in-
volve aggregating coins together and depositing them
in groups in order to decrease the number of transac-
tions with the bank. Ideas from these schemes will be
important in realizing a secure solution to payments
in TOR.

3 Overview of PAR Scheme

PAR [5] is a hybrid payment scheme that includes the
distribution of anonymous payments and identity-
bound payments to routers providing service for TOR
clients. The PAR scheme is essentially an onion rout-
ing protocol augmented with payment data. In PAR,
clients located outside the anonymous network must
pay the routers through which they send their en-
crypted data. This is done by withdrawing the cor-
rect number of anonymous coins from a bank and
paying the first node in the transfer path. Then,
each router in the path is responsible for paying its
successor with identity-bound payments, which are
based on micropayments [16, 25], and returning re-
ceipts to its predecessor. PAR uses these receipts,
and digital signatures, to ensure that the payments
are made correctly and accurately as intended by the
client. The last router will receive payment from its
predecessor, return a receipt, and forward data to the
receiver as usual. PAR is described in further detail
below, using the notation that follows.

Entities C is the client, Ri are TOR routers, S is
the server. Both the client and server are generally
located outside the TOR network.

Cryptographic material ri are random numbers
generated by the client and used in all subsequent
coin generation as the message MSG travels through
the circuit. The routers will depend on these ri to
generate coins for the successor. AC(·) and IDC(·)
are anonymous coins (A-coins) and identity bound
coins (ID-coins), respectively.

Cryptographic functions H(·), H ′(·), HAB(·),
are cryptographically secure hash functions, where

3

Figure 1: An example of the PAR protocol executed
on a three-hop circuit

HAB(·) is a hash function negotiated and shared be-
tween A and B. EKAB

(·) represents cryptograph-
ically secure encryption with a key K shared be-
tween A and B while DKAB

(·) represents decryption.
sigA(·) is a cryptographic signature by A.

3.1 Coins

Blind signatures (A-coins) In a blinded signature
scheme, a signer signs a blinded message provided by
a client. The client later recovers a valid signature
from the blinded one. As a result, the client obtains
a valid (msg, sig) pair while the signer learns nothing
about it. The PAR scheme uses the blind signature
as anonymous coins (A-coins). An A-coin is in the
form of sigB(H(r)).

A valid pair of (msg, sig) is treated as a depositable
coin issued by the bank. The bank verifies the valid-
ity of the signature but is not able to link the pre-
sented signature with any signature it issued before.
To prevent double spending by clients, the bank is
required to record all the anonymous coins ever pre-
sented. Any client that obtains an A-coin is encour-
aged to immediately contact the bank to verify the
coin and uncover users who attempt double spending.

Since A-coins are anonymous, it is difficult to dis-
cover who is to blame for double spending. There is
no way to prove the real double spender. To migitate
the problem, PAR protocol proposes to have every
A-coin spender sign the coin. Therefore, once a dou-
ble spent coin is detected, the coin receiver can show
the Bank the sender’s signature on the coin to clear
himself/herself from blame.

Micropayments (ID-coins) An ID-coin in the
form of IDCA→B(r) = sigA{MC,H(r), B} is em-
ployed to implement the payment between onion
routers (ORs). An ID-coin is strongly bound to both

the identity of the payer node A by the signature and
the payee node B by including its ID in the message.
The MC part (micro-coin [16]) can be verified with-
out the help from bank.

Both A-coins and ID-coins are in the form of a sig-
nature on the hash value of a random number. When
coins are paid, neither the hash value nor the random
number (pre-image) is revealed to the payee. In the
PAR scheme, in order to make the coin depositable,
a payee must receive the random number as a receipt
from some party. The PAR scheme embedded this
coin and receipt scheme into TOR messages to pro-
vide the incentive of faithfully forwarding messages.

3.2 Protocol

Protocol setup Every TOR participant chooses one
public-private key pair (sks

U , pks
U) for signing pur-

poses and chooses another public-private key pair
(ske

U , pke
U) for encryption purposes. The bank gen-

erates a blind signature key pair (skb
B , pkb

B) for sign-
ing A-coins. The client establish a hash function H
for coins, in addition to another hash function H ′ for
integrity check. The client shares with each node in
the circuit a key KCRi and two adjacent nodes in
the path share a secret key KRiRi+1 . The client also
shares with each router a hash function HCRi for re-
ceipt checking.

Protocol message Suppose client C chooses to
build a circuit with t TOR nodes to server S through
R1, R2, · · · , Rt. For Tor node Ri, the message it re-
ceives from previous hop Ri−1 (where Ri−1 = C in
the case that Ri is the first router in the path) is in
the following format:

EKRi−1Ri
(ID,CoinList, Sig(CoinList),MSGC→Ri)

ID indicates the node id of the message destina-
tion. Normally ID = Ri. CoinList is the payment
Ri−1 sends to Ri. The part of the signature on
CoinList, Sig(CoinList), is required when A-coins
are sent and can be omitted when ID-coins constitute
CoinList. MSGC→Ri is further decomposed into the
following format:

EKCRi
(HList, rList,HCRiList,Ri+1,MSGC→Ri+1)

HList are hashes of random values and used to
generate payments for Ri+1. rList are receipts
which should be sent back to the previous hop, and
HCRiList are hashes of the receipt for Ri to ensure
Ri+1 returns the correct receipts. MSGC→Ri+1 are
recursively defined in a similar way. For R1, rList is
∅ because C does not need receipts. Similarly, for Rt,
HList is ∅ because S does not need payment.

4

Protocol 1 Example of PAR communication protocol using a 3 hop circuit
Setup:
1: C generates random numbers r1, r2, r3, r4, r5, r6, and coins AC(H(r1)), AC(H(r2)), AC(H(r3))
2: MSGC→R1 = (R1, AC(H(r1)), AC(H(r2)), AC(H(r3)), sigC{H ′(AC(H(r1)), AC(H(r2)),

AC(H(r3)))}, H(r4), H(r5), HCR1(r1), HCR1(r2), HCR1(r3), R2, EKCR2
(MSGC→R2))

3: MSGC→R2 = (H(r6), r1, r2, r3, HCR2(r4), HCR2(r5), R3, EKCR3
(MSGC→R3))

4: MSGC→R3 = (r4, r5, HCR3(r6), S, MSGC→S)
Execution:
5: C → R1 : EKCR1

(MSGC→R1)
6: R1 : verify sigC{H ′(AC(H(r1)), AC(H(r2)), AC(H(r3)))} and generate coins IDCR1→R2(H(r4)),

IDCR1→R2(H(r5)) with H(r4) and H(r5).
7: R1 → R2 : EKR1R2

(R2, IDCR1→R2(H(r4)), IDCR1→R2(H(r5)), sigR1{H ′(IDCR1→R2(H(r4)),
IDCR1→R2(H(r5)))}, MSGC→R2)

8: R2 : verify sigR1{H ′(IDCR1→R2(H(r4)), IDCR1→R2(H(r5)))} and generate coin IDCR2→R3(H(r6))
9: R2 → R1 : EKR1R2

(r1, r2, r3)
10: R2 → R3 : EKR2R3

(R3, IDCR2→R3(H(r6)), sigR2{H ′(IDCR2→R3(H(r6)))}, MSGC→R3)
11: R3 : verify sigR2{H ′(IDCR2→R3(H(r6)))}
12: R3 → R2 : EKR2R3

(r4, r5)
13: R3 → S : MSGC→S

Protocol example Protocol 1 is a detailed ex-
ample of the PAR protocol in a TOR 3 hop circuit.
This example excludes communication with the bank,
which happens both as part of the clients’ A-coin gen-
erations and the routers’ coin deposits. The notation
is as presented above. More detailed versions of the
client message setup and router message forwarding
can be found in the Appendix in Protocol 2 and Pro-
tocol 3, respectively.

Protocol 1 is now discussed breifly in high level.
The client C first sends R1 a message containing A-
coins, C’s signature of the payment along with the
message to pass along to R2. R1 then uses values C
provides to generate payment in the form of ID-coins
for R2. Every Ri in R2 to Rt will send back a re-
ceipt to Ri−1, along with generating payment in the
form of ID-coins for Ri+1 using values provided by
C. The message for Ri+1 is forwarded to the next
router, including imbedded payment generation in-
formation, except when the next router is Rt (since
Rt is the last router in the path and does not need
to pay the server.) Each router also verifies payment
information while forwarding the message. If any ver-
ifications fail, the protocol is aborted. Note that in
this scheme, the TOR node Rt doesn’t get the receipt
from S. Instead, Rt will get receipts from C before
or after the message delivery.

4 Attacks on PAR

In this section, we will describe three attacks on the
PAR scheme. The first is a generic attack on payment

schemes in TOR that we refer to as the traffic injec-
tion attack. Since the exit node has access to the
(possibly) unencrypted messages going through the
circuit, he can modify the content to cause the client
to send more packets than intended and thus more
coins than intended. Our second attack looks at the
assumptions on how clients can collude to double-
spend coins and shows that without online double
spending checks, colluding clients can double-spend
beyond what could be considered reasonable. Our
last attack is the intersection attack. We show here
that using the information from cashed coins and
some network monitoring or colluding with routers
the bank can break sender-receiver anonymity.

4.1 Traffic injection attack

One known problem with TOR is that the exit node is
inherently trusted to forward traffic faithfully. Since
the exit node necessarily has access to the traffic
flowing through the connection, he is automatically
set up for a man-in-the-middle (MITM) attack on
the connection. This attack has been shown in the
past to sniff e-mail credentials and other sensitive
information. Here we consider the implications of
injecting new content into unencrypted http traf-
fic. Since without SSL clients browsers näıvely trust
the content returned from a http get request, they
will automatically download image links and execute
javaScript code. Using this fact the exit node in the
PAR circuit can inject many remote content links
into pages returned to the client, which will cause
the clients browser to issue many more http get re-

5

quests and, in turn, cause far more coins to be sent
to the circuit than the client intended.

We note that this attack is highly sensitive to
clients’ browser behavior. Some of the most common
remote content links are image links and javaScript
XMLHttpRequest calls. Clients can mitigate the
javaScript side of the attack by using any of several
“noScript” extensions for their browser, and this is
even encouraged since several javaScript calls can be
used to undermine client anonymity. However, most
of the modern web is useless without images and ther-
fore most client browsers cannot be expected to block
 tags in the document. Another way to mit-
igate this attack is using SSL to communicate with
the web server. This way, the content returned to
the client is guaranteed to be unaltered. This route
is not completely secure since most websites don’t
utilize https and clients therfore can’t rely on this
mechanism for most of their traffic. But even if SSL
is used, the MITM attack can still modify the traf-
fic and present bogus certificates which it has been
shown that most users will accept; however a full dis-
cussion of MITM attacks and SSL is beyond the scope
of this paper.

4.2 Double spending attack

Here we briefly describe how a group of colluding
clients can break the double-spending bounds on
PAR. In the original scheme, there is a window of
time where a client can double-spend coins before
the entry node deposits them and detects the double
spending. In the case of only one client, the double-
spending can be bounded to a reasonable amount.
However, we show a group of colluding clients breaks
this bound. Consider the following scenario: a group
of clients agrees on a set of coins to spend during
a time window in between deposits, then the group
of clients spends these coins during the time window
with the double-spending only detected at the end of
the time window when the routers try to deposit the
coins. Now the double spending amount is multiplied
by the number of colluding clients which can be quite
large. A possible fix to this problem is discussed in
section 6.

4.3 Intersection attack

We now present our main attack against the PAR sys-
tem. First we note that the identity-bound ID-coins
used between routers and subsequently deposited at
the bank gives away information about which routers
a given router was forwarding traffic to during a cer-
tain time period. Using this information the bank can

Figure 2: An example of the intersection attack with
deposits being made every 5 minutes. The potential
circuit list is reduced to a single circuit based on coin
timng and identity information.

perform an intersection style attack[17] to deduce a
particular path through the PAR network. To exe-
cute this we note that clients circuits are refreshed
every 10 minutes (meaning they now use a different
three routers for their circuit) and the refresh time de-
pends on when the circuit was opened. Thus, during
a 10 minute time interval of a circuit we are interested
in we do the following: for every deposit interval in
the time period we look at which routers the first
router was paying, and the routers they were paying
to give us the possible circuits. In each deposit inter-
val, some circuits going through the first hop will re-
fresh and use a different circuit and some other circuit
will be constructed that use the first hop as shown in
figure 2. The key is that we look for the circuit that
is constant for the 10 minute interval of the circuit
we are interested in. Unless there is a circuit that
was constructed through the first node at about the
same time as the target circuit (highly unlikely), this
attack will yield the single circuit of interest.

The above attack only discloses a circuit through
the PAR network. To extend this to break sender-
receiver anonymity, the bank has two options. First,
the bank can collude with some of the routers or the
bank can perform some passive traffic analysis of the
network. By colluding with routers at the beginning
and end of the circuit, the bank can verify that they
were handling the same circuit and the routers to-
gether know the sender and the receiver. However,
to perform this attack targeted at a certain user, the
bank would need to collude with a large portion of the
entry/exit routers in the network. Another option is
the bank can use passive traffic analysis to link the
sender and receiver. To link the sender with the cir-
cuit, the bank can enumerate the clients using PAR
(this is because the clients must purchase their coins
through the bank), and then using standard meth-

6

ods (e.g. ICMP pings) determine which clients are
online during which time periods and use another in-
tersection attack to determine which client was using
the circuit of interest. To complete the attack, the
bank can watch the traffic at the exit node to deter-
mine which server the client was communicating with
during the circuits duration. We verify these claims
empirically using a discrete-event based simulation of
TOR and the PAR system which we detail in the next
section.

5 Experimental Results

In this section we present our experimental results.
We start by giving an overview of the discrete based
simulation used to generate the data on which we ran
the intersection attack. Next we detail the intersec-
tion attack, along with our assumptions and method-
ologies. Finally we present the results of running the
attack.

5.1 TOR and PAR simulator

Our simulation system is a discrete-event based simu-
lation of TOR and PAR. Since our intersection attack
revolves around the timing of circuits and traffic, we
ignore the cryptographic details in our simulation and
focus on simulating client behavior and the timing of
the deposits. Globally, we simulate a situation with
200 clients, 50 routers, and 50 servers. We simulate
the run of this system for 30 minutes which includes
a 10 min start up phase. Below, we detail how indi-
vidual parties in the simulation behave.

Client Behavior At the start of the simulation a
client selects a random starting time between 0 and
10 minutes at which time he begins his communica-
tions. At this time he randomly selects three routers
to serve as the circuit, and a server with which to
communicate. He then generates traffic according to
the Pareto distribution as defined by:

Pr[X > x] =
(

x

xm

)−k

with parameters xm = 1
3 and k = 3

2 . He talks with
this server for a time drawn uniformly random on
0.5 to 5 minutes when he selects another server at
random to talk to. Finally, after 10 minutes of using
the same circuit he refreshes the circuit and chooses
three different routers at random to use.

Router Behavior A router in the simulation sim-
ply forwards packets and coins as specified by the
created circuits. The router randomly assigns a de-
lay uniformly on 5-10ms representing the computa-

tion time of the router. The router then stores the
collected coin for later deposit. The deposit interval
is left as an experimental parameter.

Server Behavior The servers simply receives
packets from connection and responds with 1-3 pack-
ets after a delay of 5-20ms.

Network Behavior The network forwards pack-
ets with a uniform delay of 50 to 100ms.

Bank Behavior The bank simply accepts coin de-
posits from the routers and logs the type of coin and
the payer/payee as appropriate.

5.2 Attack

We use the data generated from the above simulation
as input for our implementation of the intersection at-
tack. For the attack we assume either some collusion
between PAR routers and the bank or some network
monitoring by the bank by which the bank can ob-
serve when circuits are started with which entry node.
This mirrors the assumptions as outlined in section 4
where we note the in order to break sender receiver
anonymity, the bank must collude with routers or
perform traffic analysis. Our original implementation
of the attack proceeds as follows: for each circuit start
up observed do the following; slice the 10 minute cir-
cuit duration into time periods corresponding to the
length of the deposit interval, for the first time period
use the ID-coin data to determine which routers the
entry node was paying during the time period and
the routers those routers were paying to build a list
of potential circuits. For the remaining time periods,
if a coin representative of a potential circuit is not
observed in the time period discard that circuit as
no longer being a potential circuit. The output of
the attack is the list of circuits left after the discard
phase.

This approach turned out to be inadequate how-
ever. Upon running the attack we discovered that
depending on the deposit interval as much as 50% of
the circuits had no possible PAR circuits discovered.
The problem was that the above implementation re-
lied on the assumption that a client would be sending
a packet at least every time period. Upon examina-
tion of the raw data this turned out to not be the
case (due to the random nature of sending packets
as per the Pareto traffic distribution.) To adapt to
this, we modified our implementation to account for
this problem. Our solution was relatively simple; in
the case that the original attack returned no possible
circuits we look for the circuit that “missed” the least
amount of time periods.

7

Figure 3: CDF of potential circuits discoverd by the
intersection attack for deposit intervals of 10, 30, 60,
and 180 seconds. The attack is less effective using
higher deposit intervals.

5.3 Results and discussion

We now present the results of running the improved
experiment in figures 3 and 4. In figure 3 we present
a CDF showing the percentage of circuits with no
more than x potential circuits. The different lines
represent data from deposit intervals of 10 seconds,
30 seconds, 60 seconds (= 1 minute), and 180 seconds
(= 3 minutes.) As noted before the data shows that
as the deposit interval increases the effectiveness of
our attack decreases. One of the main points of the
data is that in order to significantly reduce the effec-
tiveness of the attack, the deposit interval needs to
be greater than 3 minutes. This means that the dou-
ble spending bound is pushed far beyond what could
be considered reasonable. In figure 4 we present the
same data represented differently. This graph shows
the percent of circuits reduced to one potential cir-
cuit as a function of the deposit interval. Again we
note that in order to reduce the number of circuits
de-anonymized to a negligible percentage the deposit
interval needs to be increased to at least 3 minutes.

Our attack was successful at confirming the dou-
ble spending problem as the main fundamental weak-
ness in the design of PAR. The results clearly show
the trade-off between the amount of double spend-
ing allowed and anonymity provided by a TOR cir-
cuit. This fundamental problem prevents the PAR
payment scheme from being completely secure and
therefore overwhelmingly supported. Ideally in an
anonymous routing scheme, a user would not be re-
quired to deposit a coin within any specified time pe-

Figure 4: Percentage of reconstructed circuits per
deposit interval. We consider circuits reconstructed
when the list of potential paths forming the curcuit
was reduced to 1.

riod. This would prevent the bank from using timing
attacks since a given coin could be deposited at an
indefinite and random time in the future. This would
allow the level of anonymity provided by a TOR cir-
cuit to be maintained. However, double spending can
not be simply ignored.

Although double spending is a significant problem,
we feel that all is not lost. We have ideas for imple-
menting a new scheme based on the PAR design that
nullifies the double spending problem by eliminating
the need for immediate verification by the bank. Our
ideas for this new design are presented below.

6 Extensions

As seen by our attacks, the bank can get non-
trivial information by watching the transactions of
the signed microcoins. We propose a distributed ver-
ification scheme which provides online double spend-
ing detection while leaking virtually no additional in-
formation. The idea for this scheme comes from Os-
ipkov et al. [20] with small modifications to fit the
TOR network.

6.1 Witness overview

If we have online verification with a single verifier,
that verifier can do a timing attack to recreate the
paths. The solution is to employ online verifica-
tion with multiple verifiers, called witnesses. In our
scheme, these witnesses will simply be the other
routers in the TOR network. Using this scheme, we

8

must ensure that a coin is bound to a specific witness
to prevent double spending. Each witness is assigned
a range of numbers and if the hash value of that coin
falls in their range, that witness’ signature is required
for the coin to be deposited. The designations of wit-
nesses to hash ranges is called the witness list. If
a witness signs the same coin twice to allow double
spending, that witness will to have reimburse the ex-
tra amount due with its own money. This requires all
witnesses to provide credit with the coin distributer
before the signing of coins is allowed. If a witness ver-
ifies too many double spent coins, it should be ejected
from the system. A witness will not profit from acting
maliciously since the amount it allows to get double
spent will come out of the credit it provided.

Since TOR routers are signing each other’s pay-
ments, routers with little downtime and few dropped
packets are more beneficial to the system. The bene-
fit to having a witness list is that it allows the network
to exclude routers that are either frequently offline,
busy or uncooperative by not signing. Routers that
hinder the witness scheme can have their range of
hash values reduced until they become more stable.

For this new payment scheme, we will not use the
signed ID-coins due to the information that they leak.
Instead we will use purely anonymous coins with a
slight modification as described by Osipkov et al.
[20]. This adds two expiration dates to every coin:
a soft expiration where the coin is no longer able to
be deposited but can be redeemed for another coin,
and a hard expiration where the coin is worthless.
The soft expiration is implemented to allow clients to
get a new coin for witnesses that are possibly offline
or too busy to verify the coin. Since the witnesses
and the coin distributer need to remember the coins
for double spending purposes, the expiration dates
ensures that they do not get overwhelmed trying to
remember if a coin has been spent.

6.2 Broker

In this section we analyze the usefulness of the bro-
ker described by Osipkov et al. [20] in regards to the
TOR network. In their scheme, the broker distributes
the coins and marks each coin with the witness list
used. Additionally, the broker injects witness list ver-
sion information into a coin when it is created. This
allows a coin to carry its own designation to a witness
list and thus doesn’t require any witness list synchro-
nization between every witness.

However, since we only want witnesses to be in-
side the TOR network to prevent information leak-
age, coins must be specifically bought from the broker
for use inside the TOR network to ensure the proper

witness list is used. The broker also becomes a single
point of failure for the anonymity of the TOR net-
work. If the witness list is skewed to make a subset
of routers sign the majority of the coins, collusion
between that subset of routers, possibly owned by
the same person, results in the timing attack vul-
nerability. To prevent this, we must ensure that the
majority of routers in the TOR network are each re-
sponsible for a moderate range of the witness list.
A broker must also be very careful on how it vali-
dates complaints about uncooperative witnesses. We
realize that malicious users or even malicious TOR
routers might claim a particular witness is being un-
cooperative in order to skew the witness list. How
these complaints are handled is outside the scope of
this paper, but should be given consideration.

If we do not use a broker to insert the witness list
into every coin, this allows the client to use a coin
from any trusted bank. This requires the manage-
ment of a witness list that is fairly synchronized be-
tween every TOR router. Depending on how often
the witness list is updated, this could potentially be
a difficult problem. If the witness list is managed
to reduce uncooperative users, wherever this list is
managed would once again become a single point of
failure for the anonymity of the network. At the cost
of an increased coin verification failure, the TOR net-
work could simply split witness signature responsibil-
ity equally between all routers. Clients would not lose
any money, because any coin that has an uncoopera-
tive witness can just be returned to the bank after the
soft expiration date for another coin. Instead, hav-
ing uncooperative routers on the witness list simply
increases the average latency.

Double spending can still be prevented without us-
ing a centralized witness list at the cost of slightly
more network traffic. When there is a witness list
update due to a router possibly joining or leaving
TOR, every router should ask both the current wit-
ness and previous witness if they had seen the coin
already. While this doubles the amount of witness
signature traffic, this double checking only needs to
last until the maximum soft expiration time from a
bank has passed. Once this time has passed, we can
be assure no coins were double spent and only the
current witness should be consulted. These updates
could be planned to happen when the network typi-
cally experiences lower than normal usage.

A problem with incorporating coins that are spend-
able outside the TOR network is that a client might
possibly only spend the coin once inside the TOR net-
work, but also once outside. The TOR routers for-
warding this traffic wouldn’t find out until the coin
was deposited, which is not done in an online man-

9

ner. To prevent this, the anonymous coins could be
modified to have an identification number attached to
them when created to signify how this coin is to be
spent, instead of a witness list. Coins can only be re-
deemed if the depositor is valid for that identification
number. This identification number could be in the
blinded portion of the coin so the bank doesn’t know
how this coin is going to be spent to maintain client
anonymity. If a client wishes to spend the coin in a
different manner, the coin can be redeemed after the
soft expiration date, but before the hard expiration.

7 Conclusions

In order to increase the number of routers in the
TOR network, we think the implementation of a pay-
ment scheme is practical. We show a current payment
scheme is vulnerable to a variety of attacks, includ-
ing a simulated traffic analysis intersection attack.
From the results of this attack, it is evident that the
main weakness in the current scheme is the trade-off
between allowed double spending and reduced anon-
mity. We propose to fix these flaws, and eliminate
this trade-off, by implementing a distributed online
verification solution. ID based coins are not used in
our scheme due to the amount of information leaked
when deposited to the bank. Instead we plan to use a
modified version of the anonymous coin for all trans-
actions.

There are still some outstanding problems with our
anonymous routing payment scheme. The biggest
problems are managing the witness list and account-
ing for data on the return path (from server to client).
How can a client be charged for data that is flowing
back from the server? One way would be to have the
exit node notify the client through the circuit that
data is ready to be delivered. The client could then
send its payment to the circuit and receive the data.
However, this method means that the exit node is
responsible for buffering data while the client con-
structs and sends the necessary coin parameters to
the circuit. While the exit node is expected to be
servicing multiple circuits, this buffering problem is
intensified. There is not a clear way to handle this
situation, and more investigation is required to de-
termine if an elegant solution exists.

References

[1] The Tor Project. https://www.torproject.org/.

[2] Wikinews. http://en.wikinews.org/wiki/

British_ISPs_restrict_access_to_Wikipedia_

amid_child_pornography_allegations.

[3] Wikipedia. http://en.wikipedia.org/wiki/

Blocking_of_Wikipedia_in_mainland_China.

[4] R. Anderson. Security Engineering. Wiley New
York, 2001.

[5] Elli Androulaki, Mariana Raykova, Shreyas Sri-
vatsan, Angelos Stavrou, and Steven M. Bellovin.
Par: Payment for anonymous routing. In Nikita
Borisov and Ian Goldberg, editors, Proceedings of
the Eighth International Symposium on Privacy En-
hancing Technologies (PETS 2008), pages 219–236,
Leuven, Belgium, July 2008. Springer.

[6] A. Back, U. Moller, and A. Stiglic. Traffic analysis
attacks and trade-offs in anonymity providing sys-
tems. Lecture Notes in Computer Science, 2137:245–
257, 2001.

[7] Oliver Berthold, Hannes Federrath, and Stefan
Köpsell. Web MIXes: A system for anonymous
and unobservable Internet access. In H. Feder-
rath, editor, Proceedings of Designing Privacy En-
hancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, pages 115–129.
Springer-Verlag, LNCS 2009, July 2000.

[8] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Compact e-cash. LECTURE NOTES IN COM-
PUTER SCIENCE, pages 302–321, 2005.

[9] D. Chaum, A. Fiat, and M. Naor. Untraceable elec-
tronic cash. In Proceedings of Crypto, volume 88,
pages 319–227, 1988.

[10] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[11] Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The second-generation onion router. In
Proceedings of the 13th USENIX Security Sympo-
sium, August 2004.

[12] Barry Hayes. Anonymous one-time signatures and
flexible untraceable electronic cash. LECTURE
NOTES IN COMPUTER SCIENCE, pages 294–
305, 1990.

[13] Andrew Hintz. Fingerprinting websites using traf-
fic analysis. In R. Dingledine and P. Syverson, edi-
tors, Proceedings of Privacy Enhancing Technologies
workshop (PET 2002), pages 171–178, San Fran-
cisco, USA, April 2002. Springer.

[14] Nicholas Hopper, Eugene Y. Vasserman, and Eric
Chan-Tin. How much anonymity does network la-
tency leak? ACM Transactions on Information and
System Security, forthcoming 2009.

[15] J. McLachlan and N. Hopper. Don’t Clog the
Queue! Circuit Clogging and Mitigation in P2P
Anonymity Schemes. Lecture Notes in Computer
Science, 5143:31–46, 2008.

10

[16] S. Micali and R.L. Rivest. Micropayments revis-
ited. LECTURE NOTES IN COMPUTER SCI-
ENCE, pages 149–163, 2002.

[17] S.J. Murdoch and G. Danezis. Low-cost traffic anal-
ysis of Tor. In IEEE Symposium on Security and
Privacy. IEEE CS, May, 2005.

[18] S.J. Murdoch and P. Zielinski. Sampled traffic anal-
ysis by internet-exchange-level adversaries. Lecture
Notes in Computer Science, 4776:167, 2007.

[19] Tatsuaki Okamoto and Kazuo Ohta. Disposable
zero-knowledge authentications and their applica-
tions to untraceable electronic cash. In CRYPTO
’89: Proceedings on Advances in cryptology, pages
481–496, New York, NY, USA, 1989. Springer-Verlag
New York, Inc.

[20] I. Osipkov, E.Y. Vasserman, N. Hopper, and Y. Kim.
Combating double-spending using cooperative p2p
systems. In Proceedings of the 27th Interna-
tional Conference on Distributed Computing Sys-
tems. IEEE Computer Society Washington, DC,
USA, 2007.

[21] J.F. Raymond. Traffic analysis: Protocols, attacks,
design issues, and open problems. Lecture Notes in
Computer Science, pages 10–29, 2001.

[22] MG Reed, PF Syverson, and DM Goldschlag.
Anonymous connections and onion routing. IEEE
Journal on Selected areas in Communications,
16(4):482–494, 1998.

[23] Michael Reiter and Aviel Rubin. Crowds:
Anonymity for web transactions. ACM Transactions
on Information and System Security, 1(1), June
1998.

[24] Marc Rennhard and Bernhard Plattner. Introducing
MorphMix: Peer-to-Peer based Anonymous Inter-
net Usage with Collusion Detection. In Proceedings
of the Workshop on Privacy in the Electronic Soci-
ety (WPES 2002), Washington, DC, USA, Novem-
ber 2002.

[25] R.L. Rivest. Peppercoin micropayments. LEC-
TURE NOTES IN COMPUTER SCIENCE, pages
2–8, 2004.

[26] R.L. Rivest and Adi Shamir. Payword and mi-
cromint: Two simple micropayment schemes. LEC-
TURE NOTES IN COMPUTER SCIENCE, pages
69–87, 1997.

[27] Andrei Serjantov and Peter Sewell. Passive attack
analysis for connection-based anonymity systems. In
Dieter Gollmann and Einar Snekkenes, editors, Pro-
ceedings of Privacy Enhancing Technologies work-
shop (PET 2002), pages 116–131, Gjvik, Norway,
December 2003. Springer.

[28] Paul Syverson, Gene Tsudik, Michael Reed, and
Carl Landwehr. Towards an Analysis of Onion Rout-
ing Security. In Proceedings of the Workshop on De-
sign Issues in Anonymity and Unobservability, pages
83–100, Berkeley, CA, July 2000.

11

Appendix

Included below are detailed versions of the actions of the client and each router in the PAR scheme. These
protocols have been included for completeness, but are not necessary in understanding the main contributions
of the paper. Protocol 2 is a detailed protocol of message setup that is performed by the client in the PAR
scheme. Protocol 3 is a detailed protocol of steps the routers take in forwarding messages in PAR.

Protocol 2 PAR: client message setup
1: Client C wants to send Server S a message: MSGC→S

2: C sets up a circuit to S via R1, R2, . . ., Rt.
3: for i = 1 to t do
4: C picks (t− i + 1) random numbers for Ri: {r(i,j)} (1 ≤ j ≤ t− i + 1).
5: end for
6: /* C now recursively generates the onion message MSGC→R1 */
7: for i = 1 to t do
8: if i == 1 then
9: HList := H(r(i+1,·)).

10: rList := ∅
11: NextHop := Ri+1

12: else
13: if 1 < i < t then
14: HList := H(r(i+1,·)).
15: rList := r(i−1,·)
16: NextHop := Ri+1

17: else
18: HList := ∅.
19: rList := r(i−1,·)
20: NextHop := S
21: end if
22: end if
23: HCRiList := HCRi(r(i,·))
24: MSGC→Ri := EKCRi

(HList, rList,HCRiList,NextHop,MSGC→NextHop)
25: end for
26: AC(r(1,·)) := Generate AC(r(1,·))
27: ACList := AC(r(1,·))
28: C → R1 : EKCR1

(R1, ACList, sigC{H ′(ACList))},MSGC→R1)).

12

Protocol 3 PAR: router message forwarding
Setup: Router Ri parses incoming message MSGSender→Ri :
1: (ID,CoinList, Sig(CoinList),MSG(C → Ri)) = DKSenderRi

(MSGSender→Ri
);

2: (HList, rList,HCRiList,NextHop,MSGC→NextHop) = DKCRi
(MSGC→Ri);

Execution:
3: if ID 6= Ri then
4: abort execution;
5: end if
6: if Sig(CoinList) 6= ∅ then
7: check Sig(CoinList) is valid; Otherwise abort execution;
8: end if
9: if rList 6= ∅ then

10: Ri → Ri−1: EKRi−1Ri
(rList)

11: end if
12: if HList 6= ∅ then /* payments needed for next hop */
13: IDCRi→Ri+1(r(i+1,·)) := Generate IDC(H(r(i+1,·)), Ri, Ri+1)
14: IDCList := IDCRi→Ri+1(r(i+1,·))
15: Ri → Ri+1: EKRiRi+1

(Ri+1, IDCList, MSGC→Ri+1).
16: Ri ← Ri+1: EKRiRi+1

(r(i,·)).
17: Ri checks r(i,·) versus HCRi(r(i,·)), making sure that receipts are authentic.
18: else /* No payment needed. Next hop should be the destination */
19: Ri → S: MSGC→S

20: end if

13

