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Abstract

An anonymous communication system hides the fact that two parties are communi-

cating, and as a result, drastically improves the online privacy of those using it. Tor is

the most popular anonymous communication system deployed, but its popularity has

illuminated problems with its design that have made it unbearably slow for many users

who would otherwise benefit from its protections. These performance problems have

been recognized, but there has been little work on designing and properly evaluating

practical solutions that improve performance while also preserving privacy.

We initiate an exploration into Tor’s system design and the quality of the communi-

cation it provides. First, we design and develop a simulation tool, called Shadow, that

allows us to experiment with the Tor software in a safe but realistic and controllable

manner. We then give a precise model of the Tor network, the backbone networks upon

which it operates, and the user agents operating within it. We show that by combin-

ing our model with Shadow, our experimentation environment is capable of producing

network interactions and performance qualities indicative of real systems.

We then investigate performance enhancements in three major areas of Tor’s de-

sign. We explore Tor’s utilization of resources by evaluating both existing and new

circuit scheduling techniques, and show the extent to which scheduling can be used to

prioritize traffic in order to improve desirable quality metrics. We then design and eval-

uate algorithms focused on reducing network load by throttling agents that consume

an unfair share of network resources. Finally, in an effort to supplement Tor’s volun-

teered resources, we design and analyze two schemes that increase network capacity by

providing incentives to those contributing resources to the system.
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Internet communication may be exemplified by a postal service: messages are sent to

third parties for transport through a network of service providers and eventual delivery

to the intended recipient. The message contains both a delivery (destination) address

and a return (source) address. These addresses allow the third party providers to route

the message toward the recipient, and allow the recipient to reply to the sender. The

sender and receiver addresses that are required for proper routing leak a significant

amount of information to those providing the transport service, even if the message

itself is sealed. Any service provider on the path between the sender and receiver may

use the source and destination addresses to determine who is talking to whom.

Internet communication occurs similarly: Internet service providers (ISPs) learn the

source and destination addresses as they route data packets over the large integrated

network of cables and wires that connect our communication devices. Despite confi-

dentiality of the packet data, ISPs may infer packet contents by tracking packet sizes

and the frequency at which they are sent. ISPs use this information to build profiles of

senders’ behaviors over time. Even if ISPs originally had good intentions when building

these profiles, they may later be legally required or politically coerced to share what

they know [1, 2], and may even take action against the source associated with a given

type of profile [3]. These actions generally threaten Internet privacy, freedom of speech,

and network neutrality.

Privacy encroachments similarly occur at many organizations around the world,

most of whom have a significant interest in tracking information into and out of their

networks. Institutions may be concerned that employees will utilize their networks in

order to illegally access copyrighted content, or that employees spend too much time

using the Internet for personal rather than work-related activities. Therefore, many

employers track their employees’ communication patterns and build profiles of their

habits. Corporations that collect customer records or store customer data, such as

cloud storage providers and location-based service providers, may be required to release

that data to authorities [4]. In all of these cases, it is possible that individuals may be

harassed when their information is sold, shared, or stolen.

Even browsing the web represents a significant threat to privacy. For example,

Internet search websites build, collect, and store profiles about who searches for what,

and when and where those searches were conducted. The profiles are used to enhance
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online services and target advertisements to those the searcher is most likely to prefer.

Unfortunately, sensitive search information is too often leaked to or shared with the

public [5, 6], and may be used to uniquely identify the searcher [7].

Government surveillance also threatens the rights of individuals. Governments

surveil the communication of their citizens and block access to content that may harm

their political image. They may block websites or media and track what their citizens

are posting online. Some governments, e.g. those in the Arab world, have been known

to threaten those who oppose their reign with violence [8]. This type of repression and

censorship severely cripples what many believe is a basic right – the right to speak freely.

The importance of private communication extends beyond freedom of speech and

protection against the invasive practices outlined above [9]. For example, intelligence

and law enforcement agents depend on the ability to communication privately in order

to conceal their operations against criminal or terrorist regimes. Businesses depend on

private communication to prevent industrial espionage, competitive intelligence gath-

ering, and the leakage of trade secrets. Journalists and political activists need private

communication in order to safely plan, organize, and promote awareness of corruption,

questionable tactics, or criminal behaviors. The wide and diverse set of users and groups

with strong desires to maintain their privacy online motivates the design of technologies

that enable safe electronic communication.

There has been a significant amount of research into anonymous communication in

the fight for privacy and freedom of speech. A major goal of most anonymous com-

munication research is to build, understand, and improve protocols for communicating

over existing Internet transports while preventing third parties from determining who

is talking to whom and who is accessing which networks or services.

Onion routing [10], particularly as deployed in Tor [11, 12], is the most widely

used and extensively studied approach to anonymous communication. As shown in

Figure 1.1, Tor is an overlay network of relays that allows its users to connect to generic

Internet services. To achieve anonymity while communicating, Tor clients first build

virtual circuits through a small set of available relays selected from Tor’s directory

service. Clients package data into 512-byte packets called cells and encrypt them once

for each relay they selected for their circuit. Each relay decrypts its “layer” of each

multiply-encrypted cell before forwarding it to the next relay in the circuit. The last
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Figure 1.1: Tor network overview. Clients download relay information from the direc-
tory service before building a cryptographic virtual circuit through the chosen relays.
Connections to the Internet are then tunneled through the circuit, while relays decrypt
and encrypt outgoing and incoming messages, respectively. No single relay can link the
client to its chosen destination.

relay forwards the then-unencrypted data to the user-specified destination, which may

be a service outside the Tor network. Each relay can determine only its predecessor

and successor in the path from source to destination, preventing any single relay from

linking the sender and receiver. Clients also choose their first relay from a small set

of entry guards [13, 14] in order to help defend against passive logging attacks [15],

and while traffic analysis is still possible [16, 17, 18, 19, 20, 21, 22, 23], it is slightly

complicated since each relay simultaneously services multiple circuits.

1.1 Performance Problems

The Tor network suffers from performance problems [24], primarily because there is too

much demand for the existing network capacity. In Tor’s current resource model, its

popularity harms its usability and performance, and may therefore have a significantly

negative impact on its users’ anonymity [25, 26].
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1.1.1 Demand for Bandwidth

Tor services hundreds of thousands of clients [27], some with high bandwidth demands:

the most recent studies of Tor exit traffic showed that file sharing connections accounted

for roughly forty percent of the data Tor transferred in 2008 [28], and fifty-two percent

in 2010 [29]. The sheer number of clients and the data they want to transfer through Tor

places an extreme amount of load on the network. Further, the aggregate bandwidth

costs of sending data securely through multiple relays are significantly higher than

direct communication: for every byte transferred between the client and the destination

server, each of three relays must also transfer it downstream, and then back upstream.

Fundamentally, a circuit’s sustained throughput cannot be higher than the rate of the

lowest upstream or downstream link of which it is composed. Performance problems

are created as a result, and exacerbated when such a high demand for bandwidth is

combined with relays providing relatively low network capacity.

1.1.2 Network Capacity

Tor’s network consists of a few thousand relays that are run by geographically diverse

volunteers [30] who altruistically contribute bandwidth and computational resources to

the network. As a result, Tor is usable even by those unable or unwilling to contribute

because they, e.g., have slow connections or are behind restrictive firewalls. Unfortu-

nately, network capacity is limited to these altruistic contributions and has increased

sublinearly to Tor’s popularity.

A relay’s utility to Tor is dependent on both the bandwidth capacity of its host

network and the bandwidth restrictions imposed by its operator. Although bandwidth

donations vary widely, the majority of relays offer (and in some cases can only provide)

less than 100 KiB/s. These low bandwidth relays actually become bottlenecks when cho-

sen for a circuit. Circuit bottlenecks are also created when high capacity relays become

severely overloaded due to demand. Relay bottlenecks increase network-wide congestion

and impair client performance, deterring users as they attempt to interactively browse

the web.

Tor’s capacity problems also make it vulnerable to a simple denial of service (DoS)

attack on the network: with nothing but a moderate number of bulk clients, an adversary
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can intentionally and significantly degrade the performance of the entire Tor network for

most users. This is a malicious attack as opposed to an opportunistic use of resources

without regard for the impact on legitimate users, and could be used by censors [31]

to discourage use of Tor. Bulk traffic effectively averts potential users from Tor at the

network’s current capacity, decreasing both Tor’s client diversity and anonymity [25, 32].

1.2 Enhancing Performance While Preserving Privacy

This dissertation explores the following thesis:

Performance in existing anonymous communication systems may be en-

hanced, while preserving privacy, by improving the utilization of resources,

reducing the network load, or increasing the network capacity.

We will explore performance in terms of measurable network characteristics and how

they change. We consider enhancing performance to mean improving the desired quality

of these characteristics. Our exploration will mainly consider expected file download

times as a metric for client performance: we will seek to provide lower latency and

higher throughput for Tor clients to reduce the time it takes to download files through

the Tor network. We will also consider overall network utilization, as we argue that

network performance is enhanced if the network supports more load without reducing

expected client performance.

Performance enhancements that preserve privacy do not leak any information beyond

what is already leaked by existing Tor protocols. Toward this goal, our work explores

algorithmic designs that do not require input from external network nodes. In other

words, a node should only have access to local and previously available information

when deciding how to process an algorithm or protocol. We will quantify the extent to

which privacy may be preserved while using our enhancements.

1.3 Contributions and Outline

In this dissertation, we develop Tor network experimentation and modeling tools and

use them to explore privacy preserving network enhancements that improve our un-

derstanding of Tor’s performance problems while attempting to alleviate them. The
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remainder of this chapter outlines our primary contributions in this regard.

Network Experimentation Framework (Chapter 3)

New Tor design proposals and attacks on the system are challenging to test in the live

Tor network because of deployment issues and the risk of invading users’ privacy, while

alternative Tor experimentation techniques are limited in scale, are inaccurate, or create

results that are difficult to reproduce or verify. In Chapter 3 we design and implement

Shadow, an architecture for efficiently running accurate Tor experiments on a single

machine. We validate Shadow’s accuracy with a private Tor deployment on PlanetLab

and a comparison to live network performance statistics. Our software runs without

root privileges, is open source, and is publicly available for download.

Tor Network Model (Chapter 4)

Live Tor network experiments are difficult due to Tor’s distributed nature and the pri-

vacy requirements of its client base. Alternative experimentation approaches, such as

simulation and emulation, must make choices about how to model various aspects of

the Internet and Tor that are not possible or not desirable to duplicate or implement di-

rectly. In Chapter 4 we methodically model the Tor network by exploring and justifying

every modeling choice required to produce accurate Tor experimentation environments.

We validate our model using two state-of-the-art Tor experimentation tools and mea-

surements from the live Tor network. We find that our model enables experiments that

characterize Tor’s load and performance with reasonable accuracy.

Improving Resource Utilization (Chapter 5)

One approach to improving Tor’s performance is to better utilize the available network

resources, particularly through scheduling. In Chapter 5 we first evaluate past and cur-

rent Tor scheduling approaches [33] in our network model to understand their effects on

performance. We then explore the extent to which scheduling can fundamentally benefit

performance by considering schedulers that have ideal information: those that can per-

fectly categorize data by traffic type and prioritize it accordingly. To this end, we design

and develop two schedulers based on the proportional differentiation architecture [34],
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implement them in Tor, and evaluate them with both single-circuit and full-network

experiments to better understand how they might enhance Tor client performance.

Reducing Load (Chapter 6)

The scheduling approach attempts to reorder and prioritize packets to better utilize

the available bandwidth for specific traffic classes, but does not reduce bottlenecks

introduced by the massive amount of bulk traffic plaguing Tor [28]. Further, scheduling

does not directly address or provide adequate defense against performance degradation

attacks similar to the problems created by bulk traffic clients.

Equipped with mechanisms from communication networks, in Chapter 6 we design

and implement three Tor-specific algorithms that throttle bulk transfers to reduce net-

work congestion and increase network responsiveness. Unlike existing techniques, our

algorithms adapt to network dynamics using only information local to a relay. We

experiment with full-network deployments of our algorithms under a range of light to

heavy network loads. We find that throttling results in significant improvements to

web client performance while mitigating the negative effects of bulk transfers. We also

analyze how throttling affects anonymity and compare the security of our algorithms

under adversarial attack. We find that throttling reduces information leakage compared

to unthrottled Tor while improving anonymity against realistic adversaries.

Increasing Capacity (Chapters 7 and 8)

A significant problem faced by the current Tor system is how to recruit new relays to

increase network capacity, support expansion, and ease the load suffered by current re-

lays. We explore two designs that attempt to solve this problem by offering performance

incentives to those who contribute resources to the network.

In Chapter 7 we explore BRAIDS, a set of practical mechanisms that encourages

users to run Tor relays, allowing them to earn credits redeemable for improved perfor-

mance of both interactive and non-interactive Tor traffic. These performance incentives

will allow Tor to support increasing resource demands with almost no loss in anonymity:

BRAIDS is robust to well-known attacks. We evaluate BRAIDS and show that it al-

lows relays to achieve lower latency than non-relays for interactive traffic, and higher

bandwidth utilization for non-interactive traffic.
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With similar motivations, Chapter 8 explores LIRA, a lightweight scheme that cre-

ates performance incentives for users to contribute bandwidth resources to the Tor net-

work. LIRA uses a novel cryptographic lottery: winners may be guessed with tunable

probability by any user or bought in exchange for resource contributions. The traffic of

those winning the lottery is prioritized through Tor. The uncertainty of whether a buyer

or a guesser is getting priority improves the anonymity of those purchasing winners,

while the performance incentives encourage contribution. LIRA is more lightweight

than prior reward schemes that pay for service and provides better anonymity than

schemes that simply give priority to traffic originating from fast relays. We analyze

LIRA’s efficiency, anonymity, and incentives, present a prototype implementation, and

evaluate it with experiments that show it indeed improves performance for those ser-

vicing the network.



Chapter 2

Background

10



11

2.1 Introduction

This chapter discusses Tor’s internal architecture to facilitate an understanding of how

internal processes affect client traffic flowing through a Tor relay. Please see Figure 2.1

for a schematic diagram.

2.2 Multiplexed Connections

All relays in Tor communicate using pairwise TCP connections, i.e. each relay forms a

single TCP connection to each other relay with which it communicates. Since a pair of

relays may be communicating data for several circuits at once, all circuits between the

pair are multiplexed over their single TCP connection. Each circuit may carry traffic

for multiple services or streams that a user may be accessing. TCP offers reliability, in-

order delivery of packets between relays, and potentially unfair kernel-level congestion

control when multiplexing connections [35]. The distinction between and interaction of

connections, circuits, and streams is important for understanding Tor.

2.3 Connection Input

Tor uses libevent [36] to handle input and output to and from kernel TCP buffers.

Tor registers sockets that it wants to read with libevent and configures a notification

callback function. When data arrives at the kernel TCP input buffer (Figure 2.1(a)),

libevent learns about the active socket through its polling interface and asynchronously

executes the corresponding callback (Figure 2.1(b)). Upon execution, the read callback

determines read eligibility using token buckets.

Token buckets are used to rate-limit connections. Tor fills the buckets as defined

by configured bandwidth limits in one-second intervals while tokens are removed from

the buckets as data is read, although changing that interval to improve performance

is currently being explored [37]. There is a global read bucket that limits bandwidth

for reading from all connections as well as a separate bucket for throttling on a per-

connection basis (Figure 2.1(c)). A connection may ignore a read event if either the

global bucket or its connection bucket is empty. In practice, the per-connection token

buckets are only utilized for edge (non-relay) connections. Per-connection throttling
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Figure 2.1: A Tor relay’s internal architecture.

reduces network congestion by penalizing noisy connections, such as bulk transfers, and

generally leads to better performance [38] for most users.

When a TCP input buffer is eligible for reading, a round-robin (RR) scheduling

mechanism is used to read the smaller of 16 KiB and 1
8 of the global token bucket size

per connection (Figure 2.1(d)). This limit is imposed in an attempt at fairness so that a

single connection can not consume all the global tokens on a single read. However, recent

research shows that input/output scheduling leads to unfair resource allocations [39].

The data read from the TCP buffer is placed in a per-connection application input

buffer for further processing (Figure 2.1(e)).

2.4 Flow Control

Tor uses an end-to-end flow control algorithm to assist in keeping a steady flow of cells

through a circuit. Clients and exit relays constitute the edges of a circuit: each are

both an ingress and egress point for data traversing the Tor network. Edges track data

flow for both circuits and streams using cell counters called windows. An ingress edge

decrements the corresponding stream and circuit windows when sending cells, stops

reading from a stream when its stream window reaches zero, and stops reading from all

streams multiplexed over a circuit when the circuit window reaches zero. Windows are

incremented and reading resumes upon receipt of SENDME acknowledgment cells from

egress edges.

By default, circuit windows are initialized to 1000 cells (500 KiB) and stream win-

dows to 500 cells (250 KiB). Circuit SENDMEs are sent to the ingress edge after the egress
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edge receives 100 cells (50 KiB), allowing the ingress edge to read, package, and forward

100 additional cells. Stream SENDMEs are sent after receiving 50 cells (25 KiB) and allow

an additional 50 cells. Window sizes can have a significant effect on performance and

recent work suggests an algorithm for dynamically computing them [40].

2.5 Cell Processing and Queuing

Data is immediately processed as it arrives in connection input buffers (Figure 2.1(f))

and each cell is either encrypted or decrypted depending on its direction through the

circuit. The cell is then switched onto the circuit corresponding to the next hop and

placed into the circuit’s first-in-first-out (FIFO) queue (Figure 2.1(g)). Cells wait in

circuit queues until the circuit scheduler selects them for writing.

2.6 Scheduling

When there is space available in a connection’s output buffer, a relay decides which of

several multiplexed circuits to choose for writing. Although historically this was done

using round-robin, a new exponentially-weighted moving average (EWMA) scheduler

was recently introduced into Tor [33] and is currently used by default (Figure 2.1(h)).

EWMA records the number of packets it schedules for each circuit, exponentially de-

caying packet counts over time. The scheduler writes one cell at a time chosen from

the circuit with the lowest packet count and then updates the count. The decay means

packets sent more recently have a higher influence on the count while bursty traffic does

not significantly affect scheduling priorities.

2.7 Connection Output

A cell that has been chosen and written to a connection output buffer (Figure 2.1(i))

causes an activation of the write event registered with libevent for that connection. Once

libevent determines the TCP socket can be written, the write callback is asynchronously

executed (Figure 2.1(j)). Similar to connection input, the relay checks both the global

write bucket and per-connection write bucket for tokens. If the buckets are not empty,
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the connection is eligible for writing (Figure 2.1(k)) and again is allowed to write the

smaller of 16 KiB and 1
8 of the global token bucket size per connection (Figure 2.1(l)).

Data is written to a kernel-level TCP buffer (Figure 2.1(m)) and sent to the next hop.
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3.1 Introduction

Tor’s goal to provide low-latency anonymity for its clients has led to an enormous

amount of research on topics including, but not limited to: anonymity attacks and

defenses [41, 17, 19, 20, 42]; system design, performance, and scalability improvements

[40, 35, 43, 33, 44]; and the economics of volunteering relays to the Tor network [45, 46,

47]. Most Tor research – whether implementing a new design approach or analyzing a

potential attack – either requires or would benefit from access to the live Tor network and

the data it generates. However, such access might invade clients’ privacy or be infeasible

to provide – testing a small design change in the real network requires propagating that

change either to hundreds of thousands of Tor clients or to thousands of volunteer

relays, and in some cases both. Therefore researchers often use alternative strategies to

experiment and test new research designs and proposals.

3.1.1 Tor Experimentation

One approach for experimenting with Tor outside of the live public network is to con-

figure a parallel private test network deployment [41, 33] either using machines at a

university or a platform such as PlanetLab [48]. Since live deployments run real soft-

ware over real hardware, the results are generally accepted. However, PlanetLab and

other private deployments do not accurately reflect the same network conditions of the

public Tor network, are difficult to manage, and do not scale well – PlanetLab has only

around one thousand nodes of which roughly half are usable at any time. Therefore

researchers often experiment through simulation [46, 49, 47, 50]. Simulating particu-

lar Tor mechanisms may increase scalability, but also harms accuracy: the Tor software

and protocols are continuously updated by several Tor developers, causing simulators to

become outdated and unmaintained. Moreover, since simulators tend not to be reused,

the results of one group may be inconsistent with or can not be verified by other groups.

3.1.2 Tor in a Box

To increase consistency, accuracy, and scalability of Tor experiments, we design and

develop a new and unique simulation architecture called Shadow. Shadow allows us

to run a private Tor network on a single machine while controlling all aspects of an
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experiment. Results are repeatable and easily verifiable through independent analysis.

Although Shadow simulates the network layer, it links to and runs real Tor software,

allowing us to experiment with new designs by implementing them directly into the

Tor source code. This strategy expedites the process of incorporating proposals into

Tor since software patches can be submitted to the developers. Shadow is capable of

simulating a large and diverse private Tor network, requiring little to no modification

to the numerous supported Tor software versions. Shadow’s focus on usability and

commitment to open source software1 improves accessibility and promotes community

adoption, interactions, and contributions.

Shadow is a discrete-event simulator that utilizes techniques allowing it to run real

applications in a simulation environment. Real applications are encapsulated in a plug-

in wrapper that contains functions necessary to allow Shadow to interact with the

application. Although the application is only loaded into memory once, the plug-in

registers memory addresses for all variable application state and Shadow manages a

copy of these memory regions for each node in the simulation. Similar to a kernel

context switch, Shadow swaps in the current node’s version of this state before passing

control to the application, and swaps out the state when control returns. Function

interposition allows Shadow to intercept function calls, e.g. socket and event library

calls, and redirect them to a simulated counterpart. As detailed in Section 3.3, we run

Tor using these techniques, as well as symbol table manipulations, without modifying

the source code.

3.1.3 Accurate Simulation

We validate Shadow’s accuracy against a 402-node PlanetLab deployment, testing net-

work performance using HTTP file transfers both directly and through a private Tor

network deployment. Although private Tor networks on PlanetLab do not consistently

represent the live Tor network well, they allow us to test our ability to model a real, di-

verse network (i.e. how well we can “shadow” PlanetLab conditions). We find that our

results are within reason although PlanetLab exhibits highly variable behaviors because

of overloaded CPUs caused by co-location and resource sharing.

To validate Shadow’s ability to accurately and consistently represent the real, live

1Shadow source code is publicly available under the GPLv3 [51, 52].
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Tor network, we simulate a 1051-node topology with bandwidth and relay characteristics

taken from a live Tor network consensus. We model the Internet using network latency

measurements taken between all PlanetLab nodes. We find that client performance in

Shadow closely matches live statistics gathered by the Tor Project [30], with download

time quartiles within 15 percent of the live statistics for various download sizes.

3.2 Requirements

3.2.1 Accuracy

In order to produce results that are consistent with and representative of the live Tor

network, Shadow should run a minimally-modified version of the native Tor software.

Running the Tor software in our simulator will ensure that Tor’s behavior in our simu-

lated Tor network will closely represent the behavior of Tor in the live network.

In addition to running the Tor software, Shadow should also have accurate models of

system-level interactions. Tor is mostly concerned with buffering, encrypting/decrypting

cells, and sending and receiving large amounts of network traffic with non-blocking I/O.

Inaccurate models of these mechanisms would lead to inaccurate results and measure-

ments of Tor’s behavior. Therefore, we are model the system-level network stack of an

operating system by simulating TCP and UDP, correctly managing network-level buffers

and buffer sizes, and simulating non-blocking event-driven I/O. Since a large amount of

Tor’s run-time is spent performing cryptography and processing data, Shadow should

avoid execution of expensive cryptographic operations while instead modeling the CPU

delays that would have occurred had the cryptography actually been performed.

Finally, accurate software and an accurate system will not function correctly with-

out an accurate network. First, Shadow requires models for network characteristics

including latency and reliability of network links, complex AS-level topologies, and up-

stream/downstream capacities for end-hosts. Second, Shadow must accurately model

the network characteristics of Tor, including relay-contributed bandwidth, faithful band-

width distributions among entry, middle, and exit relays, and geographical distribution

of relays. Shadow must also incorporate network traffic from Tor clients and model

accurate distributions of that traffic from live Tor traffic patterns.
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3.2.2 Usability and Accessibility

A simulator that produces accurate results characteristic of the live Tor network will be

of little use to the community without a usable simulation framework. Shadow should

therefore do the following to increase usability and promote community adoption.

First, Shadow should be simple to obtain, build, and configure to allow for rapid

deployment. Users should be able to run a simulation with minimal overhead and

little or no configuration. However, advanced users should be able to easily modify

a simulation, generate new topologies, and configure network and system parameters.

Simulation results should be easy to gather and parse to produce visualizations that

allow an analysis of the network state. Second, Shadow should run completely as a user-

level process on a single machine with inexpensive hardware to minimize overhead costs

associated with obtaining, configuring, and managing multiple machines or clusters.

Shadow should be publicly accessible so that results can be easily compared and verified.

3.3 Design

Shadow is a discrete event simulator that can run real applications as plug-ins while

requiring minimal modifications to the application. Plug-ins containing applications link

to Shadow libraries and Shadow dynamically loads and natively executes the application

code while simulating the network communication layer. Shadow was originally2 a

fork of Distributed Virtual Network (DVN) simulator [53], adding roughly 18,000 lines

of code (including example plug-ins). An overview of Shadow’s design is depicted in

Figure 3.1 and details about its core simulation engine are given below in Section 3.3.1.

Shadow dynamically loads plug-ins and instantiates virtual nodes as specified in a

simulation script. Communication between Shadow and the plug-in is done through

a well-defined callback interface implemented by the plug-in. When the appropriate

callback is executed, the plug-in may instantiate and run its non-blocking application(s).

The application will cause events to be spooled to the scheduler by executing a system

call that is intercepted by Shadow and redirected to a function in the node library.

The interceptions allow integration of the application into the simulation environment

2The description of Shadow in this chapter is based on Shadow v1.0.0. All code inherited from DVN
has been removed in newer versions of Shadow.
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Figure 3.1: Shadow’s architectural design. Using a plug-in wrapper, real-world appli-
cations are integrated into Shadow as virtual nodes while system and library calls are
intercepted and replaced with Shadow-specific implementations.
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Figure 3.2: Main loop and conservative multi-process synchronization using dynamic
barriers. Safe execution windows are calculated using the minimum local worker time
plus the minimum simulated latency between nodes. The barrier is dynamically pushed
as local times advance.

without requiring modification of application code. Virtual nodes communicate with

each other through a virtual network which spools packet and other network related

events to the scheduler. Each virtual node stores only application-specific state and

loads/unloads the state as necessary during simulation execution. We now describe the

main architectural components that enable Shadow to realize the above functionality

and fulfill our design requirements discussed in the previous section.

3.3.1 Core Simulation Engine

Shadow was originally a fork of the Distributed Virtual Network (DVN) Simulator

[53]. DVN is a discrete event, multi-process, scalable UDP-based network simulator

written in C that can simulate hundreds of thousands of nodes in a single experiment.

DVN takes a unique approach to simulation by running UDP-based user applications as

modules loaded at run-time. Among DVN’s core components are the per-process event

schedulers, a process synchronization algorithm, and a module subsystem. We describe

each of these main components but note that Foo Kune et al. [53] provide DVN’s design

details in much greater resolution.
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Discrete-event Scheduler

DVN implements a conservative, distributed scheduling algorithm (see Figure 3.2) that

utilizes message queues to transfer events between workers. The scheduling algorithm

consists of three phases: importing events initiated from remote nodes, synchronizing

worker processes, and executing local node events. During the import phase, workers

process incoming messages containing events and store them in a custom local event

priority queue. After all messages are imported, workers send synchronization messages

(discussed below) to other workers and finally process local events in non-decreasing

order. Incoming messages are buffered while processing local events and handled by the

scheduler during the next import phase.

Multi-process Synchronization

Messages between the master and workers enable global time synchronization through-

out the simulation. Synchronized time is vital to ensure events are executed in the

correct order since a conservative scheduling algorithm cannot revert events. By ex-

changing messages, each process tracks the local time of all other processes. A barrier

is computed by taking the minimum local time of each process and adding the mini-

mum network latency between any two network nodes in the simulation. The barrier

represents the earliest possible time that an event from one process may affect another

process. Each process may execute events in its local event queue as long as the event

execution time is earlier than the barrier. This is called the safe execution window : any

event in this window may be safely executed without compromising the order of events

(i.e. time will never jump backwards to execute a past event). Barriers are dynamically

updated as new synchronization messages update local times. Future events are allowed

to execute as the barrier progresses through time. This synchronization approach allows

the distribution of events to multiple processes.

Module Subsystem

DVN contains a subsystem for dynamically loading modules. Modules, pieces of code

that are run by nodes, are generally created by porting application code to use DVN net-

work calls and implementing special functions required by DVN. The special functions
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allow modules to receive event callback notifications from DVN. Although each module

may be run by several nodes, module libraries are only loaded into memory once. In

order to support multiple nodes running the same module, DVN requires each module

to register all variable application state. Using the registered memory addresses, DVN

may properly load node state before passing execution control to the module, and store

node state after regaining control.

3.3.2 Simulation Script

Each simulation is bootstrapped with a simulation script written in a custom scripting

language. This script gives the user access to commands that allow Shadow to dy-

namically load multiple plug-ins, create and connect networks, and create nodes. Valid

plug-ins are loaded by supplying a filepath while parameters such as latency, upstream

and downstream bandwidth, and CPU speed are specified by either loading a properly

formatted CDF data file or generating a CDF using a built-in CDF generator. Host-

names may be specified for each node and are otherwise automatically generated to

facilitate support for a Shadow name service. The script also specifies which plug-in to

run and when to start each node.

Events are extracted from a properly formatted simulation script and spooled to

the event scheduler using the times specified with each command. After the script is

parsed, the simulation begins by executing the first extracted event and runs until either

there are no events remaining in the scheduler or the end time specified in the script

is reached. Each node creation event triggers the allocation of a virtual node and its

network and culminates in a callback to a Shadow plug-in for application instantiation.

3.3.3 Shadow Plug-ins

A Shadow plug-in is an independent library that contains applications the user wishes to

simulate and a wrapper around these applications allowing integration with the Shadow

simulation environment. Each Shadow plug-in wrapper implements the plug-in interface

– a set of callbacks that Shadow uses to communicate with the plug-in. Plug-ins may

also link to a special Shadow plug-in utility libraries to, e.g., resolve a hostname or IP

address or log messages.
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Application

To run in Shadow, an application must be asynchronous, i.e. non-blocking, to prevent

simulator deadlocks during the execution of application code. We note that asynchronic-

ity may be achieved with a small amount of code in the plug-in wrapper that utilizes the

built-in Shadow callbacks or by utilizing the libevent-2.0 asynchronous event library

[36], as Shadow supports a subset of this library.

Next, the application must be run as a single process and in a single thread. Child

processes or threads forked or spawned by an application will not be properly contained

in the simulation environment and are therefore currently unsupported. In most cases

forking or spawning children will lead to undefined behavior or undesirable results.

We note that most multi-threaded applications have a single-threaded mode and the

difficulty in porting those that do not is application-specific.

Finally, the plug-in must register all variable application state with Shadow to facil-

itate multiple virtual nodes running the same application. Plug-ins fulfill this require-

ment by passing pointers to node-specific allocated memory chunks and their sizes to

a Shadow library function. Therefore each variable must be globally visible during the

registration process. However, we note that a plug-in may use standard tools to scan and

globalize symbols present in the binary after the linking process. As in our Tor plug-in

(Section 3.4), this technique may be used to dynamically generate registration code and

eliminates the requirement of modifying variable definitions inside the application.

Shadow Callbacks

The Shadow plug-in interface allows Shadow not only to notify the plug-in when it

should allocate and deallocate resources for running the application(s) contained in

the plug-in, but also to notify the plug-in when it may perform network I/O (reading

and writing) on a file descriptor without blocking. The I/O callbacks are crucial for

asynchronicity as they trigger application code execution and prevent applications from

the need for polling a file descriptor. The Shadow plug-in library also offers support for a

generic timer callback so plug-ins may create additional events throughout a simulation.

Note that callbacks may also originate from the virtual event library, as described in

Section 3.3.4 below, if the application uses libevent-2.0.
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3.3.4 Virtual Nodes

In Shadow, a virtual node represents a single simulated host. A virtual node contains

all state that is specific to a host, such as addressing and network information that

allows it to communicate with other hosts in the network. Virtual nodes also contain

Shadow-specific implementations of system libraries that promote homogeneity between

existing interfaces. Function interposition allows for seamless integration of applications

into Shadow by redirecting calls to system functions to our Shadow implementation.

Virtual nodes store their own application-specific state and swap this state into the

plug-in’s address space before passing control of code execution to the plug-in.

Virtual Network

In Shadow, the virtual network is the main interface through which virtual nodes may

communicate. Upon creation, each node’s virtual network interface is assigned an IP

address and receives upstream and downstream bandwidth rates as configured in the

simulation script. Each virtual network contains a transport agent that implements

a leaky bucket (i.e. token bucket) algorithm that allows small traffic bursts but en-

sures average data rates conform to the configured rate. The transport agent handles

both incoming and outgoing packets, allowing for asymmetric bandwidth specifications.

The agent provides traffic policing by dropping (and causing retransmission of) all non-

conforming packets. Conforming incoming packets are passed to the virtual socket

library (discussed below) for processing, while events are created for conforming outgo-

ing packets and spooled to the scheduler for delivery to another node after incorporating

network latency.

Node Libraries

Each virtual node implements several system functions as well as network, event, and

cryptography libraries. Function interposition is used to redirect standard system and

library functions calls made from the application to their Shadow-specific counterparts.

Function interposition is achieved by creating a preloaded library with functions of the

same name as the target functions, and setting the environment variable LD PRELOAD to

the path of the preload library. Every time a function is called, the preload library is
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first checked. If it contains the function, the preloaded function is called – otherwise the

standard lookup mechanisms are used to find the function. No additional modifications

are required to hook into Shadow.

Virtual System. The virtual system library implements standard system calls whose

results must be modified due to the simulation environment. Functions for obtaining

system time are implemented to return the simulation time rather than the wall time

and functions for obtaining hostname and address information are intercepted to return

the hostnames as defined in the simulation script configured by the user.

The virtual system also contains a virtual CPU module in an attempt to consider

processing delays produced by an application. Using a virtual CPU and processing

delays improves Shadow’s accuracy since without it, all data is processed by the ap-

plication at a single discrete instant in the simulation. When a virtual node reads or

writes data between the application and Shadow, the virtual CPU produces a delay for

processing that data. This delay is “absorbed” by the system by delaying the execution

of every event that has already been scheduled for that virtual node. As virtual nodes

read and write more data, the wait time until the next event increases.

We determine appropriate CPU processing speeds as follows. First, throughput is

configured for each virtual CPU – the number of bytes the CPU can process per second.

Modeling the speed of a target CPU is done by running an OpenSSL [54] speed test on

a real CPU of that type. This provides us with the raw CPU processing rate, but we

are also interested in the processing speed of an application. By running application

benchmarks on the same CPU as the OpenSSL speed test, we can derive a ratio of CPU

speed to application processing speed. The virtual CPU converts these speeds to a time

per-byte-processed and delays its events appropriately.

Virtual Sockets. The Shadow virtual socket library, the heart of the node libraries,

implements the most significant features for a Shadow simulation. The virtual socket

library implements all system socket functionality which includes: creating, opening,

and closing sockets; sending, buffering, and receiving data; network protocols like the

User Datagram Protocol (UDP) [55] and the Transmission Control Protocol (TCP) [56];

and other socket-level functionalities. Shadow’s tight integration of socket functionalities

and strong adherence to the RFC specifications results in an extremely accurate network

layer as we’ll show in Section 3.5.
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Shadow intercepts and redirects functions from the system socket interface to the

Shadow-specific virtual socket library implementation. When the application sends data

to the virtual socket library, the data is packaged into packet objects. The packaging

process copies the user data only twice throughout the lifetime of the packet, meaning

the same packet object is shared among nodes. Only pointers to the packet are copied

as the packet travels through various socket and network buffers, although buffer sizes

are computed using the full packet size.

Our virtual socket libraries implement socket-level buffering, data retransmission,

congestion and flow control mechanisms, acknowledgments, and TCP auto-tuning. TCP

auto-tuning is required to correctly match buffer sizes to connection speeds since neither

high bandwidth connections with small network buffers nor low-bandwidth connections

with large network buffers will achieve the expected performance. TCP auto-tuning

allows network buffers to be dynamically computed on a per-connection basis, allowing

for highly accurate transfer rates even when endpoints have asymmetric bandwidth.

Virtual Events. Shadow supports the use of libevent-2.0 [36] to facilitate asyn-

chronous applications while easing application integration. While applications are not

required to use libevent-2.0, doing so will likely reduce the complexity of the in-

tegration process. Shadow intercepts and redirects functions from the libevent-2.0

interface to the Shadow-specific virtual event library implementation. The virtual event

library consists of two main components: an event manager and a virtual I/O monitor.

The event manager creates and tracks events and executes event callbacks while the

I/O monitor tracks the state of Shadow buffers, informing the manager when a state

change may require an event callback to fire for a given file descriptor.

Virtual Cryptography. Simulating an application that performs cryptography offers

a chance for reducing simulation run-time. As data is passed from virtual node to

virtual node during the simulation, in most cases it is not important that the data is

encrypted: since we are not sending data out across a real network, confidentiality is

not necessarily required. Therefore, applications need not perform expensive encryption

and decryption operations during the simulation, saving CPU cycles on our simulation

host machine.

Shadow removes cryptographic processing by preloading the main OpenSSL [54] func-

tions used for data encryption. The AES encrypt and AES decrypt functions are used



28

0 50 100 150 200 250 300 350 400
Monotonic Time (m)

0

10

20

30

40

50

60

70

80

90

S
im

ul
at

io
n

Ti
m

e
(m

)

5r-50c nocrypto

5r-50c crypto

50r-500c nocrypto

50r-500c crypto

Figure 3.3: Simulation vs. wall clock time. Skipping expensive cryptographic operations
results in a linear decrease in experiment run-time – nearly a one-third reduction in run-
time for a small, 550-node Tor experiment.

for bulk data encryption and the EVP Cipher function is used to secure data on SSL/TLS

connections. These functions only perform the low-level cipher operations: all other

supporting cryptographic functionality is unmodified. When preloading these func-

tions, Shadow will not perform the cipher operation during encryption and decryption.

Our virtual CPU already models application processing delays, and skipping the cipher

operations will not affect application functionality.

Figure 3.3 shows the time savings Shadow realizes using this technique with the

Scallion plug-in (discussed below in Section 3.4) for various Tor network sizes. Larger

savings in real running time are realized as experiment size increases.

Stored State

Multiple virtual nodes may run the same plug-in. Rather than duplicating the entire

plug-in in memory for each virtual node, Shadow only duplicates the variable state – the

state of an application that will change during execution. Registration of this variable

state with Shadow happens once for each plug-in. The plug-in registration procedure
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allows Shadow to determine which memory regions (beginning address and length) in

the current address space will be modified by each virtual node running the plug-in.

Following registration, Shadow possesses pointers to each memory region that may

be changed by the plug-in or application. Multiple nodes for each plug-in are supported

by allocating node-specific storage for each registered memory region and maintaining a

copy of each plug-in’s state. For transparency, Shadow loads a node’s state before every

context switch from Shadow to the plug-in, and saves state back to storage when the

context switches back to Shadow. This process minimizes the total memory consump-

tion of each plug-in, and results in significant memory savings for large simulations and

applications.

3.4 The Scallion Plug-in: Running Tor in Shadow

Shadow was designed especially for running simulations using the Tor application.

Therefore, Shadow design choices were made in support of “Scallion”3, a Tor plug-

in implementation. Each virtual node running the Scallion plug-in represents a small

piece of the Tor network. Since Shadow supports most functionality needed by Scal-

lion, the plug-in implementation itself is minimal (roughly 1500 lines of code). Here we

describe some of the specific components necessary for the Tor application plug-in.

3.4.1 State Registration

Recall that Shadow requires all variable application state to be registered for replication

among virtual nodes. Scallion must find and register all Tor variables, including static

and global variables. Unfortunately, static variables are not accessible outside the scope

in which they were defined. Therefore, scallion uses standard binary utilities such as

objcopy, readelf, and nm to dynamically scan, rename, and globalize Tor symbols.

Registration code is then dynamically generated based on the symbols present in the

Tor object files, and injected into the plug-in before compilation. Note that the size of

each variable is also extracted with the binary utilities.

3Scallions are onion-like plants with underdeveloped bulbs.
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3.4.2 Bandwidth Measurements

TorFlow [57] is a set of scripts that run in the live Tor network, continuously measur-

ing bandwidth of volunteer relays by downloading several files through each. TorFlow

helps determine the bandwidth to advertise in the public consensus document. Scal-

lion contains a component that approximates this functionality. However, Scallion need

not perform actual measurements since the bandwidth of each virtual node is already

configured in Shadow. Scallion queries for these bandwidth values through a Shadow

plug-in library function and writes the appropriate file that is used by the directory

authorities while computing a new consensus. The V3Bandwidth file is updated as new

relays join the simulated Tor network.

3.4.3 Tor Preloaded Functions

In an effort to minimize the amount of changes to Tor, Scallion utilizes the same function

interposition technique as Shadow. Scallion may intercept any Tor function for which

it requires changes and implement a custom version. Changes in Tor are required only

if the target function is static, in which case Tor can be modified to remove the static

specifier. We now discuss some functional differences between Tor and Scallion.

The Tor socket function wrapper is one function that is intercepted by Scallion and

modified to pass the SOCK NONBLOCK flag to the socket call since Shadow requires non-

blocking sockets. Another modification involves the Tor main function, which is not

suitable for use in Scallion since it contains an infinite loop. This function is extracted

to prevent the simulation from blocking, and Scallion instead relies on event callbacks

from Shadow to implement Tor’s main loop functionality.

Tor is a multi-threaded application, launching at least one CPU worker thread to

handle onionskin tasks – peeling off or adding a layer of encryption – as they arrive

from the network. Scallion implements an event-driven version of Tor’s CPU worker

since Shadow requires a single-threaded, single-process application. This is done by

intercepting the Tor function that spawns a CPU worker and relying on the virtual

event library to execute callbacks when the CPU worker has data ready for processing.

The CPU worker performs its task as instructed by Tor, and communicates with Tor
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using a socket pair (a virtual pipe) as before. The virtual event library simplifies the

implementation of the CPU worker and the functionality it provides.

Finally, Scallion intercepts Tor’s bandwidth reporting function. Each Tor relay re-

ports its recent bandwidth history to the directory authorities to help balance bandwidth

across all available relays. However, relays’ reports are based on the amount of data it

has recently transferred, and the reported value is updated every twenty minutes only

if it has not changed significantly from the last reported value. This causes relays to be

underutilized when first joining the network, and causes bootstrapping problems in new

networks since every node’s bandwidth will be zero for the first twenty minutes of the

simulation. Without appropriate bandwidth values, clients no longer perform weighted

relay selection and instead choose relays at random. To mitigate these problems, Scallion

intercepts the bandwidth reporting function and returns its configured BandwidthRate

no matter how much data it has transferred. This improves bootstrapping and path

selection for the simulated Tor network.

3.4.4 Configuration and Usability

There are several challenges in running accurate Tor network simulations with the Scal-

lion plug-in and Shadow. Although Shadow minimizes the memory requirements, run-

ning several instances of Tor still requires an extremely large amount of memory. There-

fore, simulations must generally run with scaled-down versions of Tor network topologies

and client-imposed network load.

Correctly scaling available relay bandwidth and network load is complicated. For

example, several relays with smaller bandwidth capacities will not result in the same

network throughput as fewer relays with larger bandwidth capacities, even if the total

capacities are equal. Further, correctly distributing this bandwidth among entry, mid-

dle, and exit nodes can be tricky. Although live Tor consensus documents may be used

to assist in network scaling, two randomly generated consensus topologies can have dras-

tically different network throughput measurements. Network throughput also depends

on the number of configured clients and the load they induce on Tor. Published results

about client-to-relay ratios [27] and protocol-level statistics [28] can only be used as a

rough guide to creating clients and inducing the correct load. When generating a scaled
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topology, it is essential that performance measurements of simulations be compared to

live Tor statistics for accuracy.

Due to these challenges, we implemented a script to generate and run simulations

given a network consensus document. The script parses the consensus document and

randomly selects relays based on configurable network sizes. Configurable parameters

include the fraction of exit relays to normal relays, number of clients, and client type dis-

tributions. The script eases the generation of accurate scaled topologies and drastically

improves simulator usability.

3.5 Verifying Simulation Accuracy

Many aspects of Shadow’s design (discussed in Section 3.3) were chosen in order to

produce accurate simulations. We now perform several experiments to verify Shadow’s

accuracy.

3.5.1 File Client and Server Plug-ins

HTTP client and server plug-ins were written for Shadow in order to provide a mechanism

for transferring data through the Shadow virtual network. These plug-ins also include

support for a minimal SOCKS client and proxy. The client may download any number

of specified files with configurable wait times between downloads while the server sup-

ports buffering and multiple simultaneous connections. These plug-ins are used to test

network performance during a simulation. Stand-alone executables using the same code

as the plug-ins are also compiled so that client and server functionality on a live system

and network is identical to Shadow plug-in functionality.

3.5.2 PlanetLab Private Tor Network

In order to verify Shadow’s accuracy, we perform experiments on PlanetLab. Our

experiments consist of file clients and servers running the software described above in

Section 3.5.1. In our first PlanetLab experiment, each of 361 HTTP clients download

files directly from one of 20 HTTP servers, choosing a new server at random for each

download. 18 of the 361 clients approximate a bulk downloader, requesting a 5 MiB file

immediately after finishing a download while the remaining 343 clients approximate a



33

web downloader, pausing for a short time between 320 KiB file downloads. The length

of the pause is drawn from the UNC think-time distribution [58] which represents the

time between clicks for a user browsing the web (the median pause is 11 seconds).

Clients track both the time to receive the first byte of the data payload and the time

to receive the entire download. We selected the fastest PlanetLab nodes (according to

the bandwidth tests described below) as our HTTP servers to minimize potential server

bottlenecks, although we note that fine-grained control is complicated by PlanetLab’s

dynamic resource adjustment algorithms.

Our second PlanetLab experiment is run exactly like the first, except all downloads

are performed through a private PlanetLab Tor network consisting of 16 exit relays, 24

non-exit relays, and one directory authority. All HTTP clients also run a Tor client and

proxy their downloads through Tor using a local connection to the Tor SOCKS server.

Shadowing PlanetLab

To replicate the PlanetLab experiments discussed in Section 3.5 in Shadow, we require

measurements of PlanetLab node bandwidth, latency between nodes, and an estimate of

node CPU speed. These measurements allow us to configure virtual nodes and a virtual

network that approximates PlanetLab and network conditions typical of the Internet.

First, we estimate PlanetLab node bandwidth by performing Iperf [59] bandwidth tests

from each node to every other node. We estimate a node’s bandwidth as the maximum

upload rate to any other node.

Figure 3.4(a) shows the results of our measurements compared with available band-

width from Tor relays extracted from the Tor network status consensus. Notice the

sharp increase in the number of nodes with 1.25 MiB/s (10 Mb/s) and 3.75 MiB/s

(30 Mb/s) connections. PlanetLab rate-limiting is the likely reason: the most popular

node-defined limit is 10 Mb/s while PlanetLab also implements a fair-sharing algorithm

by distributing opportunistic fractions of bandwidth to active slices. Also notice that

our PlanetLab distribution does not approximate the live Tor distribution well, which

means that our measurements in this experiment will not provide a good indication of

the performance of the live Tor network. Recall, however, that our focus here is accu-

rately shadowing PlanetLab: re-creating a network consistent with live Tor is explored

below in Section 3.5.3.
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Figure 3.4: (a) Bandwidth measurements of PlanetLab nodes and live Tor relays. Relay
bandwidth values were taken from a live consensus. (b) Latency between PlanetLab
nodes, shown as aggregate (“world”) and inter-region latency measurements. (c) Mea-
sured CPU speeds for PlanetLab nodes and our Intel Core2 Duo lab machine arcachon.
The results from arcachon were normalized to create a distribution usable in Shadow.
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To model network delays due to propagation and congestion, we perform latency

estimates between all pairs of nodes using the Unix command ping. The aggregate

results of world latencies are shown in Figure 3.4(b). Deriving a network model and

topology from the latency measurements is a bit more complex since it depends on

the geographical location of the source and destination of a ping. We approximate a

network model by creating nine geographical regions and placing each node in a region

using a GeoIP lookup [60]. We then create a total of 81 CDFs representing all possible

inter- and intra-region latencies. We configure nine virtual networks in Shadow and

connect them into a complete graph topology, where latencies for packets traveling over

each link are drawn from the corresponding CDF. Latencies for a few selected regions

are also shown in Figure 3.4(b).

Finally, we measure CPU speed of each node in order to accurately configure de-

lays for Shadow’s virtual CPU system described in Section 3.3.4. As in our previous

description, OpenSSL speed tests are run to get raw CPU throughput for PlanetLab

nodes. Since PlanetLab nodes are often constrained, we also created a normalized dis-

tribution based on the CPU speed of arcachon – a standard desktop machine in our

lab. CPU throughput is shown in Figure 3.4(c). Tor application throughput – measured

by benchmarks in which the middle relay is configured with a bandwidth bottleneck –

is combined with raw CPU throughput measurements to configure each node’s virtual

CPU delay.

Client Performance

Figure 3.5 shows the results of our PlanetLab and Shadow experiments. We are mainly

interested in two metrics: the time to receive the first byte of the data payload (ttfb) and

the time to complete a download (dt). The ttfb metric provides insight into the delays

associated with sending a request through multiple hops and the responsiveness of a

circuit, and also represents the minimum time a web user has to wait until anything is

displayed in the browser. The dt metric is a measurement of overall client performance.

Figures 3.5(c) and 3.5(e) show the ttfb metric for web and bulk clients with direct

and Tor-proxied requests both in PlanetLab and Shadow. Downloads through Tor take

longer than direct downloads, as expected, since data must be processed and forwarded

by multiple relays. Shadow seems to closely approximate the network conditions in
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Figure 3.5: Shadow and PlanetLab network performance. PlanetLab download experi-
ments were run with and without Tor and mirrored in Shadow. PlanetLab results show
higher variability due to co-location and network/hardware interruptions.
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PlanetLab, as shown by the close correspondence between the lower half of each CDF.

However, PlanetLab exhibits slightly higher variability in ttfb than Shadow as seen in

the tail of the plab and shadow CDFs – a problem that is exacerbated when downloads

are proxied through Tor. Higher variability in results is likely caused by increased

PlanetLab node delay due to resource contention with other co-located experiments.

Figures 3.5(d) and 3.5(f) show similar conclusions for the dt metric. Shadow results

appear off by a small factor while we again see higher variability in download comple-

tion times for PlanetLab. However, inaccuracies in download times appear somewhat

independent of file size. As shown in Figure 3.5(a), statistics gathered from Tor relays

support our conclusions about higher variability in delays. Shown is the number of

processed cells for each relay over the one hour experiment and the one-minute moving

average. The moving average of processed cells is slightly higher for Shadow because of

PlanetLab’s resource sharing complexity while the individual relay measurements also

show higher variability for PlanetLab. Figure 3.5(b) shows that Shadow queue times

are very close to those measured on PlanetLab, and again shows PlanetLab’s high vari-

ability. While we are optimistic about our conclusions, we emphasize that PlanetLab

results should be analyzed with a careful eye due to the issues discussed above.

3.5.3 Live Public Tor Network

Although the PlanetLab results show how Shadow performance compares to that achieved

while running on PlanetLab and a private Tor network, they do not show how accurately

Shadow can approximate the live public Tor network containing thousands of relays and

hundreds of thousands of clients geographically distributed around the world. There-

fore, we perform a separate set of experiments to test Shadow’s ability to approximate

live Tor network conditions as documented by The Tor Project [30]. Comparing results

with statistics from Tor Metrics gives us much stronger evidence of Shadow’s ability to

accurately simulate the live Tor network.

The experiments are similar to those performed on PlanetLab: web and bulk clients

download variable-sized files from servers through a private Tor network. However, file

sizes are modified to 50 KiB, 1 MiB, and 5 MiB as used by TorPerf while configura-

tion of Shadow nodes is also slightly modified to approximate resources available in live

Tor. In these experiments, we use a directory authority, 50 relays, 950 web clients,
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Figure 3.6: Shadow-Tor compared with live-Tor network performance. TorPerf repre-
sents live Tor network performance statistics available at metrics.torproject.org.
The gray area shows TorPerf first to third quartile stretch while the dotted line repre-
sents the TorPerf median. Shadow closely approximates the expected Tor client perfor-
mance for all file sizes.

metrics.torproject.org
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50 bulk clients, and 200 servers. We use a live Tor consensus4 to obtain bandwidth

limits for Tor relays and ensure that we correctly scale available bandwidth and net-

work size, while client bandwidths are estimated with 1 MiB down-link and 3.5 MiB

up-link speeds (not over-subscribed). Each relay is configured according to the live

consensus: a CircuitPriorityHalflife of 30, a 40 KiB PerConnBWRate, and a 100

MiB PerConnBWBurst. Geographical location and latencies are configured using our

PlanetLab dataset [52].

Figure 3.6 shows Shadow’s accuracy while simulating a shadow of the live Tor net-

work. CDFs of Shadow download completion times for each file size are compared with

download times measured and collected by The Tor Project. The gray area represents

the first-to-third quartile stretch and the dotted line shows the median download time

extracted from live Tor network statistical data available at The Tor Metrics Portal [30]

(gathered during April 2011 – the same month as our consensus). To maximize accu-

racy, the left edge of the gray area should intersect the CDF at 0.25, the right edge

at 0.75, and the dotted line at 0.5. Our results show that the median download times

are nearly identical for 50 KiB and 1 MiB downloads and within ten percent for 5 MiB

downloads while the first and third quartiles are within 15 percent in all cases. We

believe these results provide strong evidence of Shadow’s ability to accurately simulate

Tor. Further, we’ve shown that we can correctly scale down the Tor network in our

simulations while maintaining the performance properties of the live Tor network.

3.6 Limitations

Shadow is a discrete event simulator. By definition, Shadow imitates the behavior of

system and network processes. These imitations were done by exploring and measur-

ing real systems and real networks to produce models of real behaviors suitable for

our study of performance in Tor. This modeling approach fundamentally limits the

ability to adapt to highly dynamic environments, potentially reducing simulation ac-

curacy. We now briefly discuss our modeling approaches in the context of their effects

on simulations to emphasize the importance of analyzing and verifying results so that

4The consensus was retrieved on 2011-04-27 and valid between 03:00:00 and 06:00:00.
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future researchers may make informed decisions regarding experimentation with their

algorithms and protocols.

In addition to simulating TCP, Shadow models the Internet by utilizing real delays

gathered from ping measurements on PlanetLab. The measurements give us a distribu-

tion of pairwise delays between nodes. We then categorize all nodes into geographical

“regions” and aggregate node distributions between each region. This approximation

forms our model of the Internet and is given as input to a simulation: when sending

a packet from a node in one region to a node in another, we sample the distribution

corresponding to the link between those regions. This model is based on specific mea-

surements between specific points at a specific time. If Internet congestion at that

time was uncharacteristically high or low, our model would skew results. Although

this approach seemed to provide an adequate delay model in our simulations, future

work should consider if their experiments could benefit from something more robust. In

particular, experiments that depend on side-channels stemming from latency, through-

put, or the inner workings of a specific TCP implementation may require an alternative

experimentation approach.

Scallion models system processing delays by gathering PlanetLab OpenSSL speed and

application performance test measurements. Processing delays are then accumulated as

the application reads and writes data, as this allows Shadow to quantify the amount of

work the application is performing. Delays are incorporated into the event scheduling

mechanism. This is a crude approximation of the real processing delays experienced

on a system and is application specific: different applications may have very different

processing delay models. For example, our processing delay model would be inadequate

for an application that reads and writes data one percent of the time and spends the

remaining time performing expensive operations. Inaccurate delay models would po-

tentially skew results. Therefore, new application performance testing is required to

appropriately model processing delays. Further, experiments that attempt to introduce

variability in processing times as a key feature of an algorithm or as part of an attack

will require more accurate simulations.

In our analysis of Tor performance, our modeling approaches were suitable to obtain

realistic and consistent results. In particular, our Tor experiments were run using the

same models while each experiment varied only a single configuration option. Therefore,
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each experiment was subject to the same system and network conditions and the same

systematic biases that Shadow potentially introduces during simulation. As a result, we

can be reasonably convinced that the relative differences between experimental results

are due to our configured change and not to some systematic inaccuracy inherent to

simulation, irrespective of how well the absolute simulation results match those obtained

from real systems and networks.

Future Shadow users should be aware of the above limitations and recognize that

adequate models are application dependent. It may be the case that more robust mod-

els are needed to effectively analyze particular algorithms or protocols. Future research

should adapt models as appropriate to their work in order to draw meaningful conclu-

sions, and validate results with other experimentation methods.

3.7 Summary

This chapter presented the design and implementation of a large scale discrete event

simulator called Shadow, and a plug-in called Scallion that is capable of linking to and

running the Tor software over a simulated network. In addition to an explanation of

Shadow’s non-trivial design, we performed an extensive experimental analysis to verify

the accuracy of Tor simulations. We found that client performance for simulated Tor

clients is surprisingly congruent to performance achieved through the live public Tor

network. High accuracy is achieved by “shadowing” the Tor network, considering relay

characteristics from a live Tor consensus and inter-node latency characteristics from

PlanetLab ping measurements.
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4.1 Introduction

Recall that Tor [11] is an anonymizing overlay network consisting of thousands of vol-

unteer relays that provide forwarding services used by hundreds of thousands of clients.

To protect their identity, clients encrypt their messages multiple times before source-

routing them through a circuit of multiple relays. Each relay decrypts one layer of each

message before forwarding it to the next-hop relay or destination server specified by

the client. Without traffic analysis, the client and server are unlinkable: no single node

on the communication path can link the messages sent by the client to those received

by the server.

Tor is a distributed system containing a handful of authorities that assist in distribut-

ing a consensus of trusted relay information. This directory of relays informs clients

about the stability of and resources provided by each relay. Clients use this information

to select relays for their circuits: the choice is weighted by the relative difference in the

perceived throughput of each relay in an attempt to balance network load. Although

Tor’s main purpose is to protect clients’ communication privacy, it also serves as a tool

to resist censorship. Citizens in countries controlled by repressive regimes rely on Tor to

mask their intended communication partners, thereby circumventing the block that may

otherwise occur at censors’ borders. Although several nations have attempted to block

Tor, its distributed architecture has thus far proven resilient to long term censorship.

Tor’s popularity, distributed architecture, and privacy requirements increase the dif-

ficulty in experimenting with new algorithm and protocol designs. New designs require

software updates before testing their network effects, which both prolongs and com-

plicates the experimental process. Further, since the live network is not a controlled

environment, fluctuations in network conditions may both bias results and make them

impossible to replicate. Finally, experiments are often constrained due to privacy risks

to Tor’s clients.

The disadvantages to live Tor experimentation have led researchers to explore alter-

native approaches, including the utilization of network testbeds such as PlanetLab [61],

simulation [49, 46, 62], and emulation [63, 64, 65]. Each of these alternatives to experi-

mentation on the live Tor network must make choices about how to model the existing

network. A lack of details about and justifications for such choices obscures the level
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of faithfulness to the live network and decreases confidence that the obtained results

provide meaningful information.

We improve the state of cyber security by contributing a novel and complete model of

the Tor network that may be used for safe and realistic Tor experiments. In Section 4.3,

we enumerate, explore, and justify each Tor modeling decision through methodical rea-

soning, using data from real Internet measurements where possible. We provide insight

into non-intuitive consequences of alternative modeling strategies while precisely speci-

fying and discussing our modeling techniques.

We validate that our model produces an accurate environment whose performance

and load are characteristic of the live Tor network. To this end, we utilize two state-

of-the-art Tor experimentation platforms: Shadow [62] and ExperimenTor [65]. We

describe the tools and discuss their pros and cons in Section 4.2, both to show that our

model is applicable in multiple testing environments and to guide future work in selecting

the tool most suitable to a given research question. In Section 4.4, we instantiate our

model with both Shadow and ExperimenTor and compare results obtained with each

tool to data collected from the live Tor network. We find that both tools produce

reasonable Tor load and performance characteristics using networks of various sizes

produced with our model. We inform the research community about the lessons we

learned in Section 4.5 while concluding in Section 4.6.

The following summarizes this chapter’s contributions:

• We justify and precisely specify the techniques we used to create accurate Tor

network models

• We validate that our model is capable of producing an accurate environment whose

performance and load are characteristic of the live Tor network, using multiple

experimentation tools

• We provide the first direct comparison between results obtained with Shadow [62]

and ExperimenTor [65]—two state-of-the-art Tor experimentation platforms

4.2 Background

While Tor is the most widely used anonymity network today with hundreds of thousands

of daily users, Tor is still an active research network on which researchers work to
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improve its performance and security. To that end, prior Tor research has utilized a wide

variety of methodologies which includes: analytic modeling [49, 32] and simulation [49,

46] of specific aspects of Tor’s design; relatively small Tor deployments on PlanetLab [41,

33]; and direct experimentation [66] and measurement [28] on the live Tor network.

Analytic modeling, simulations and small-scale Tor deployments on testbeds such as

PlanetLab each make certain simplifying and potentially unrealistic assumptions that

often leave many open questions about how the results obtained might translate to the

live Tor network. Direct measurement and experimentation with the live network are

unable to investigate design changes at scale due to software upgrade delays. Further,

such well-intentioned research might have a negative impact on real Tor users’ quality

of service as well as their privacy [67].1

In an effort to enhance the realism and safety of Tor experimentation, two designs

for whole-Tor network testbeds, Shadow [62] and ExperimenTor [65], have been inde-

pendently developed and made publicly available for use by the research community. In

contrast to prior approaches to Tor research, these testbeds seek to replicate in isolation

the important dynamics of the live Tor network at or near scale, complete with directory

authorities, Tor routers, Tor clients, applications, and servers. While the details of how

these tools model the live Tor network are discussed at length in Section 4.3, we first

overview each tool’s distinct approach.2

4.2.1 Shadow

To produce high fidelity experiments in a controlled and repeatable manner, Shadow

leverages discrete-event simulation of the network layer and runs real, unmodified appli-

cation software within the virtual network topology. Shadow also simulates the effects

of background Internet traffic by introducing non-deterministic jitter and packet loss

on links. Shadow offers an extensible plug-in framework through which an investigator

can integrate an application or protocol of her choice into the Shadow experimentation

environment. A plug-in called Scallion for simulating the Tor network is available. Im-

portant advantages of Shadow are that it can simulate large-scale distributed systems

1See Bauer et al. [65] for a survey of prior methods for Tor research.
2This work describes and uses Shadow version 1.4.0 with Scallion version 1.3.1, and ExperimenTor

as of April 2012. Later versions may have new features and capabilities not described here.
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(such as Tor) on a single well-provisioned machine, results can be trivially replicated

due to its design, and it can scale to arbitrarily sized networks because it runs in virtual

time. Furthermore, virtual machines are available for running Shadow in the cloud on

Amazon’s EC2. See Shadow’s webpage for more details [52].

4.2.2 ExperimenTor

Similar to Shadow, ExperimenTor offers the ability to run unmodified Tor software

within an isolated environment to conduct experiments that are faithful to dynamics of

the live Tor network. In contrast to Shadow’s network simulation approach, Experimen-

Tor is a network emulation-based testbed, built on the mature Modelnet [68] network

emulation platform. ExperimenTor uses one machine to emulate a specified network

topology and another machine (or possibly several machines) to run unmodified soft-

ware within the virtual network. Also unlike Shadow, ExperimenTor does not endeavor

to account for the effects of unrelated background Internet traffic on experiments. While

ExperimenTor cannot easily be run on a single machine, it has an advantage of using

the operating system’s native network stack, rather than a simulation. More details

about ExperimenTor can be found on its webpage [69].

4.3 Model

Tor experimentation outside of the live network benefits from accurate models of net-

work characteristics and node behaviors. This section details our approach to modeling

Tor while discussing alternative approaches and common pitfalls. Our model is not

intended to be a complete set of all characteristics and behaviors one could model, but

rather the subset that we found most important and most useful. Although tested with

Shadow [62] and ExperimenTor [65], we intend the model to apply to a broad range of

research problems.

4.3.1 Topology

We first consider the structure of our experimental network. Ideally, our network topol-

ogy would replicate the Internet architecture, including all autonomous systems (ASes),

core, backbone, and edge routers, and all links between them. Such a structure would
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Figure 4.1: The vertex and edge properties in our modeled topology. The topology
forms a complete graph.

provide the most accurate view of the Internet to an experimental framework. Unfor-

tunately, the exact structure of the Internet is unknown and inferring it is an open

research problem (e.g., [70]). Even if the Internet structure were known, it would be

extremely large and too inefficient to replicate for experimental purposes. Therefore,

we produce a small-scale, manageable model of the Internet.

Mapping the Internet topology is a major research area that has resulted in the de-

velopment of multiple tools and techniques [71, 72, 73, 74]. This work utilizes geographic

clustering by country3 to scale the Internet down to a manageable topology because Tor

similarly reports statistics about its users, allowing for a natural assignment of Tor node

properties and placement of Tor nodes in our topology. Further, our approach produces

small and efficient complete topologies (see Figure 4.1): we minimize the number of

topology vertices and edges while remaining compatible with Tor’s reporting method,

and do not require routing algorithms to send packets through the network backbone.

Finally, geographical clustering simplifies the process of mapping nodes to vertices, since

any desired location (IP address) can be mapped to a cluster using a wide variety of

GeoIP tools (e.g. those provided by MaxMind [60]).

3Note that some Tor research questions may require a more detailed model of the Internet topology,
a problem future work should consider.
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Network Vertices

In our clustering approach, we create a network vertex for each country, Canadian

province, and American state.4 We take this approach, as opposed to clustering by

Autonomous System (AS), because geographical clustering most closely resembles the

actual structure of the Internet: end-users and hardware are physically located in clearly

defined geographical regions. ASes, however, typically span multiple geographical re-

gions. Further, many properties of network vertices and edges directly correspond to

their geographical location, resulting in less variance when aggregating measurements

of such properties.

Each vertex is assigned default upstream bandwidth, downstream bandwidth, and

packet loss properties obtained from the Ookla Net Index dataset [75]. The dataset pro-

vides aggregate statistics collected during bandwidth speed tests [76] and ping tests [77].

Ookla aggregates millions of such tests and provides the rolling mean throughput for

each geographic region (vertex in our topology) over thirty day intervals. The cumula-

tive distributions on bandwidths are shown in Figure 4.2(a).

Network Edges

Each vertex in our topology is connected to every other vertex, forming a complete

graph. Each of these pairwise connections are represented as a network edge. We assign

each network edge the following properties: latency (end-to-end packet delay), jitter (the

variation in packet delay), and packet loss (the fraction of packets that are dropped).

Note that full end-to-end loss rates are computed by combining the loss rates of the

source and destination vertices and the connecting edge. Due to the lack of accurate

loss rate measurements in the Internet core, our model currently utilizes only vertex

loss rates from Ookla [75].

To model edge latency in our topology, we use round trip times (RTTs) measured by

the iPlane [73] latency estimation service.5 iPlane gathers RTTs from several vantage

points, including PlanetLab nodes and traceroute servers, on a daily basis [78]. We use

4We used Tor’s directly-connecting-user country database [30] to form our list of countries, which
we supplemented with states and provinces from Net Index [75].

5The traceroutes were collected on 2012-03-28.
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Figure 4.2: (a) Topology vertex bandwidths from Net Index, and estimated relay band-
widths from published relay documents. (b) Topology edge latency. (c) Sampling relays
for scaled-down Tor experiments. Our sampling algorithm produces the best fit to the
original relay bandwidth distribution by minimizing the area between the CDF curves.
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RTT
2 to approximate latency between every iPlane node.6 We then use GeoIP lookup to

assign each iPlane node to a network vertex, and therefore each estimated latency value

corresponds to a network edge. Since there may not be an iPlane node corresponding

to every network vertex (because there is not an iPlane node in every country), we

create a temporary virtual overlay topology containing only nine “regional” clusters

(e.g. US East, US West, EU East, EU West, etc.) and aggregate our latency estimates

on the corresponding regional overlay edges. Then, we assign each network edge for

which we have no RTT measurements the median latency value from the corresponding

overlay edge. Figure 4.2(b) shows the iPlane latency estimates between common regional

overlay edges, and confirms that an increase in physical distance between nodes implies

an increase in latency. Finally, we approximate jitter over our network edges as IQR
2 ,

where IQR is the edge latency inter-quartile range.

4.3.2 Hosts

Once we have configured a topology, we next configure hosts that operate in that topol-

ogy. In the context of a Tor network, we are most concerned with Tor relays, Tor

clients, Tor authorities, and Internet web/file servers. Although the live Tor network

contains thousands of relays and hundreds of thousands of clients, it is often the case

that experiments must be scaled down significantly due to hardware limitations. We

now explain our approach to scaling down the Tor network for each host type.

Tor Relays

Relays are an important part of a Tor network model, as each of them donates band-

width and provides the forwarding service upon which the network is built. Recall that

when building circuits, clients select relays according to weights published in the consen-

sus. These selection-weights direct clients to relays according to each relay’s perceived

throughput, and have a dramatic impact on relay and network load and congestion [43].

Therefore when scaling down from the thousands of relays in the Tor consensus to a

manageable number for experiments, it is important that the distribution of selection-

weights in the scaled network is as close as possible to that of the live network. Past

6Although Internet paths may be asymmetric, we found RTT
2

a suitable approximation of edge
latency after aggregating measurements.
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Algorithm 1: Sample relay bandwidths to produce a distribution that best fits that of

the original relay population

Input: sorted list L of N relay bandwidths, sample size K ≤ N
Output: sorted list of sampled bandwidths S

1 n← floor
(N
K
)
;

2 r ← K− n;
3 i← 0;
4 for k ← 0 to K − 1 do
5 j ← i+ n;
6 if k < r then j ← j + 1;
7 bin← L.slice(i, j); // range [i, j)
8 S.add(median(bin));
9 i← j

work has sampled uniformly at random from the existing set of relays [46] when choos-

ing relays for experiments. Unfortunately, the distribution that results from randomly

selecting relays may not fit the original selection-weight distribution well. We now de-

scribe an algorithm that produces the best fit sample of the original distribution while

quantifying its improvement over random selection.

To scale the number of relays down to K of N , we split a sorted list of N relay

selection-weights into K bins and choose the median weight from each bin. The resulting

weight distribution best fits that of the original relay population: any non-median weight

value would only increase the distance between the distributions. This approach is

detailed in Algorithm 1. To quantify our algorithm’s effectiveness, we compare it to

random selection using the difference from the original relay weight distribution as a

metric. This is calculated as the integral of the absolute value of the difference between

the sampled CDF s(x) and the Tor relay selection-weight CDF f(x):∫ ∞
0
| f(x)− s(x) | dx (4.1)

The result is then normalized. Figure 4.2(c) compares the distribution of this closeness

metric for 1000 samples of K relays using our algorithm and random sampling.7 While

our algorithm always produces the best fit result for each sample (the vertical line

7We found insignificant variance in the sample distributions when choosing K ∈ [50, 1000].
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Algorithm 2: Estimate relay upstream and downstream capacities using data published

in the consensus, server descriptors, and extra infos

Input: consensus weights C, max bw bursts B, max read and write bw histories
R and W

Output: capacity up U and down D
1 for i← 0 to getRelayCount()− 1 do
2 if B[i] > 0 then
3 if R[i] > 0 and W[i] > 0 then

4 ratio← R[i]
W[i] ;

5 if ratio > 1 then
6 U [i]← B[i];
7 D[i]← (B[i] · ratio);
8 else
9 D[i]← B[i];

10 U [i]←
(
B[i] · 1

ratio

)
;

11 else U [i]← D[i]← B[i];

12 else if R[i] > 0 and W[i] > 0 then
13 U [i]←W[i];
14 D[i]← R[i];

15 else U [i]← D[i]← C[i];

in Figure 4.2(c)), random sampling produces distributions as far as ten percent from

optimal.

We draw two samples of relays from those listed in the consensus: one for exit relays

(discussed below) and one for non-exit relays. We then consider several relay proper-

ties. First, we assign each relay to the network vertex in our topology corresponding

to its geographic location (found by GeoIP lookup of the relay’s IP address). This al-

lows communication between relays while also resulting in latencies between relays that

correlate with physical distances. Next we compute relay rate limits8 and access link

capacities, the most important properties affecting the resources each relay provides and

the expected client performance in our modeled network. Rate limits are taken from

the public server descriptors [30] of our sampled relays. Capacities must be estimated.

8A relay operator may limit the amount of bandwidth its relay consumes by configuring a token
bucket rate-limiter: the token bucket size and refill rate can be configured by setting BandwidthBurst

and BandwidthRate in the configuration file.
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Since a relay’s ISP access link capacities are not directly measured or published,

we estimate these values using historical bandwidth measurements published in server

descriptors and extra info documents, and the weights published in the consensus. The

published documents include: bandwidth weights—values used during circuit construc-

tion to help distribute client load to faster relays; observed bandwidth—the smaller of

the maximum sustained input and output over any ten second interval; and read/write

bandwidth histories—the maximum sustained input and output over any fifteen-minute

interval. We prefer the observed bandwidth as the best estimate of capacity. Since

only the smaller of the input and output observed bandwidth is published, we use the

read/write histories to infer to which the published value corresponds, and the ratio

of read/write histories to estimate the unpublished observed value. In the absence of

observed bandwidth information, we use read/write histories directly, and otherwise fall

back on the bandwidth weights. A detailed specification is provided in Algorithm 2. The

distribution on relay bandwidths computed using Algorithm 2 is shown in Figure 4.2(a).

Note that a relay’s observed bandwidth is only a good estimator of capacity when the

relay was not limiting its rate during at least one ten second interval, and the relay had

enough clients to consume its available bandwidth. Otherwise, the observed bandwidth

is an underestimate of a relay’s true capacity. This is corroborated in Figure 4.2(a):

upstream and downstream estimates are mostly symmetric due to the reliance on ob-

served Tor bandwidth and Tor’s circuit design, and the relay capacities appear far less

than the expected upstream and downstream capacities from Net Index. We plan to

explore passive measurement techniques, such as packet trains [79], to directly measure

relay capacities in future work. Such measurements would provide a significantly better

data source for modeling capacities than currently available.

The last part of modeling relays is adjusting their Tor configuration. As mentioned

above, we sample relays that will exit Tor traffic separate from those that won’t. Both

exit and non-exit relays require the ORPort option to configure it as a relay while exit

relays additionally require a configured ExitPolicy. (Exit policies may be found in

relays’ server descriptors.) Other notable configurations include TestingTorNetwork

to help with bootstrapping in our test environment, and DirServer to specify our

directories.
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Tor Authorities

Tor directory authorities are responsible for creating, signing, and distributing the con-

sensus document—a list of all available relays and their associated bandwidth weights.

Tor bandwidth authorities measure the expected performance of each relay and use the

relative measured performance to compute the consensus weights used by clients for

relay selection. In the live Tor network, the bandwidth measurement functionality is

provided by a set of scripts known as TorFlow [57].

Our model selects the fastest sampled non-exit relay as the directory authority (all

Tor directory authorities are currently non-exit relays). Since our test network lacks

TorFlow, we must ensure that the bandwidth weights that appeared in the live network

consensus also appear in our test network consensus. This is done by writing a .v3bw

file with the live network bandwidth weights in the directory authority’s data directory,

as is done in live Tor. Lacking a valid .v3bw bandwidth file, the authorities will fall

back on relays’ reported observed bandwidth. In this case, we must remove a software-

defined limit9 on the observed bandwidth to allow relays to report the correct consensus

weight. Note that although clients will be selecting relays in our test network using the

same weights as the live network, the probability that each relay is selected necessarily

increases (we downsampled the relays and the sum of the probabilities must equal 1).

Tor Clients

In our model, Tor clients are the main source of network load, producing all of the

exit-bound traffic routed through Tor while simultaneously serving to measure network

performance. Clients perform synchronous HTTP GET requests to download files through

our modeled Tor network. Clients choose HTTP servers from which to request each

download uniformly at random. Since the requests are synchronous, each client will be

responsible for at most one stream through Tor at any time. Each client measures the

time from when it initiates a connection to the SOCKS application proxy to the first byte

and last byte of the file payload, indicating network responsiveness and performance.

Our model classifies clients into two broad categories: web clients and bulk clients.

Each web client requests 320 KiB files, the average webpage size according to recent web

9Directory authorities will not trust any self-reported relay bandwidth over
DEFAULT MAX BELIEVABLE BANDWIDTH, which is set to a default value of 10 MiB/s.
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Table 4.1: The ten countries with the highest reported Tor connecting user counts [30]
during January, 2012.

Country % Country %

United States 16.46 Spain 5.08
Iran 12.63 Russia 3.46
Germany 9.99 Republic of Korea 2.66
Italy 6.96 United Kingdom 2.39
France 6.30 Saudi Arabia 2.38

metrics [80]. After completing a download, a web client will pause for a time drawn

uniformly at random from a range of [1, 20] seconds before initiating the next download

to simulate the time a user takes to consume the web page content. Each bulk clients

requests 5 MiB files without pausing between the completion of one download and the

initiation of the next. Our client model is based on work characterizing Tor exit traffic

by McCoy et al. [28]. This work found that roughly 60% of the bytes and 95% of the

connections exiting Tor were attributable to HTTP traffic while roughly 40% of the bytes

and 5% of the connections were attributable to BitTorrent traffic. Therefore, we use

a 19:1 ratio of web to bulk clients. The total number of clients is dependent on the

number of relays and their capacities (see Section 4.4).

Each client is assigned a geographical location and the corresponding network vertex

in our topology according to Tor’s directly connecting user statistics [30, 81]. These

statistics specify the country from which clients connect when directly downloading Tor

directory information. The top ten countries from a recent version of this data are shown

in Table 4.1. When assigning a client to a vertex, the assignment is weighted by the

given percentages. Each client’s upstream and downstream capacities on the connection

to and from its ISP are taken from the default vertex properties as measured by Net

Index [75] (see Section 4.3.1).

Internet Servers

In our model, HTTP servers are the destinations of our client requests and the sources

of the files downloaded through Tor. In order to attribute changes in performance to

Tor itself while minimizing effects external to the network, we assign Internet servers
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Table 4.2: The ten countries with the highest number of servers in the Alexa top 1
million data set [82] during January, 2012.

Country % Country %

United States 47.94 France 3.64
Germany 8.65 Russia 3.40
China 4.50 Netherlands 2.86
United Kingdom 4.20 Canada 2.10
Japan 3.73 Italy 1.48

100 MiB/s bandwidth capacities. This high capacity will prevent our Internet servers

from becoming bottlenecks during our client downloads. The geographic locations of

Internet servers are assigned using the Alexa Top Sites data set [82]. Since the Alexa

ranking may not capture the usage patterns of Tor users well, we instead produce a

distribution on location of the reported top one million sites.10 The top ten countries

with the most sites in the Alexa data set are given in Table 4.2. Our assignment of

server to topology vertex is weighted by this distribution, similar to our client vertex

assignment.

4.4 Methodology and Experiments

To determine the accuracy of and increase the confidence in our Tor network model,

we instantiate it using two state-of-the-art Tor experimentation tools: Shadow [62]

and ExperimenTor [65] (see Section 4.2 for background). This section compares the

performance and load characteristics of the environments produced with each tool to

that of the live Tor network, illustrating the effectiveness of our modeling strategies from

Section 4.3. We choose network performance and load because Tor already measures

these characteristics on the live network, allowing for a direct comparison of results.

Further, these metrics represent the gauges in which clients and relays are generally

interested, and are most useful when developing new algorithms that improve the state

of the network.

We test our model with two different network sizes, both of which are scaled down

10We find locations with standard DNS queries and GeoIP lookups.
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Figure 4.3: Performance for live Tor and our small modeled network configured with 50
relays and 500 clients in Shadow and ExperimenTor. Time to the first byte of the data
payload is shown in (a) and (b), and time to the last byte in (c) and (d), for various
download sizes.
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Figure 4.4: Performance for live Tor and our large modeled network configured with
100 relays and 1000 clients in Shadow and ExperimenTor. Time to the first byte of
the data payload is shown in (a) and (b), and time to the last byte in (c) and (d), for
various download sizes.
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versions of the live Tor network. In our small network, we configure 50 relays and 500

clients that communicate with 50 HTTP file servers. In our large network, we configure

100 relays and 1000 clients that communicate with 100 HTTP file servers. The small and

large networks are approximately fifty and twenty-five times smaller than the size of

Tor, respectively. Both Shadow and ExperimenTor use instantiated versions of our Tor

network model11 and are configured to run a vanilla instance of version 0.2.3.13-alpha

of the Tor software for ninety virtual minutes. Download results are ignored during the

first thirty minutes of each experiment to allow for Tor’s bootstrapping process. File

download timings during the remaining period are utilized as discussed below.

Note that we explored various numbers of clients and found that a 10:1 client-to-

relay ratio in our experiments resulted in load and network performance that reasonably

approximated that of the live Tor network [30]. We stress that this client-to-relay

ratio is due to our client modeling strategies; alternative client behaviors may require

an adjusted ratio to produce the network characteristics that best approximate Tor.

Accurately modeling Tor client behaviors is an open research problem which future

work should consider.

4.4.1 Network Performance

We compare client performance measured in our test environments to client perfor-

mance in Tor during the same period we are modeling.12 We measure the time to the

first and last byte of the data payload of our 320 KiB and 5 MiB file downloads as indi-

cations of network responsiveness and throughput. We compare our results to live Tor

network performance measured with torperf [83], a tool that monitors live Tor network

performance by downloading files of sizes 50 KiB, 1 MiB, and 5 MiB. Performance for

our small and large networks are respectively shown in Figures 4.3 and 4.4.

We expect client performance in our test environments to be similar to that in Tor.

In particular, the time-to-first-byte should be consistent regardless of the size of the

file being downloaded. As can be seen in Figures 4.3(a), 4.3(b), 4.4(a), and 4.4(b),

our model produces accurate time-to-first-byte performance in both tools, although the

11The topology files are available on the Shadow website [52].
12This work models Tor as it existed during January, 2012.
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tools tend to lose some accuracy above the eightieth percentile. Under the time-to-last-

byte metric, we expect our 320 KiB web downloads to complete somewhere between the

torperf 50 KiB and 1 MiB downloads, and our 5 MiB download times to be consistent

with torperf. Web download times are more accurate in ExperimenTor in the large

network (Figure 4.4(c)) than the small (Figure 4.3(c)), and all downloads tend to take

slightly longer in ExperimenTor than in live Tor. Shadow approximates web download

times reasonably well (Figures 4.3(c) and 4.4(c)), and bulk downloads complete slightly

faster in Shadow than in Tor (Figures 4.3(d) and 4.4(d)). Overall, we are impressed

that our model enables both tools to characterize Tor performance closely, even with

scaled-down Tor networks.

4.4.2 Network Load

Each relay in Tor tracks byte histories: the number of bytes read and written over time.

We use these statistics to calculate the throughput of each relay included in our small

and large networks, and directly compare throughputs from Tor with throughputs from

our experimentation environments. The results are shown in Figure 4.5.

The aggregate throughput for all the relays we chose in our small network (Fig-

ure 4.5(a)) totaled 27.6 MiB/s for live Tor, 31.1 MiB/s in Shadow, and 33.1 MiB/s in

ExperimenTor. In our large network (Figure 4.5(b)), the aggregate throughput was

44.8 MiB/s in live Tor, 58.4 MiB/s in Shadow, and 62.2 MiB/s in ExperimenTor. These

results indicate that our experimental networks were too heavily loaded, and the abso-

lute error increased with the network size. The distribution on the normalized individual

relay throughput error is shown in Figure 4.5(c). The distributions have long tails: the

maximum normalized error was 34.9% for Shadow and 28.6% for ExperimenTor in the

small network, and 23.9% for Shadow and 22.5% for ExperimenTor in the large net-

work. Although the absolute error increased with the network size, the individual errors

decreased in the larger network. Our analysis found that most throughput error was

attributable to bootstrapping issues: recently added fast relays were under-utilized in

Tor but fully utilized in our experiments. Despite these issues, over 95% of the relays

in the small network and 98% of the relays in the large network had less than 10%

throughput error.
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Figure 4.5: Load in live Tor and (a) our small modeled network of 50 relays and 500
clients, and (b) our large modeled network of 100 relays and 1000 clients. Throughput
is indexed by each relay chosen in our model and the sum is shown in the legend. (c)
The distribution on the normalized experimental throughput error from reported live
Tor throughput.
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4.5 Lessons Learned

Modeling a distributed system is a complex process. During this process, we found that

it is important to use real Internet and system measurements to eliminate arbitrary

modeling decisions, as this tends to have a significant impact on how accurately the ex-

perimental environment replicates the real distributed system. However, measurements

should not be used until they are fully understood (what they mean and how they are

useful), or they may harm accuracy.

We also found it important to determine useful metrics that allow for a compari-

son between the experimental platform and the real distributed system being modeled.

Useful metrics and proper comparisons of measurements increase confidence in the ob-

tained results. Useful metrics assist in understanding the strengths and weaknesses of a

model, and help determine if the environment produced from the model is suitable for

the research question of interest.

We discovered that it’s very useful to replicate experiments on multiple experimental

platforms. This can help identify errors or peculiarities caused by a specific tool. For

example, this process allowed us to discover that packet header overhead on TCP packets

without a data payload were not consuming bandwidth on Shadow’s virtual network

interfaces. Shadow’s accuracy improved greatly after accounting for TCP packet header

overhead on both data and control packets.

Finally, we’d like to stress the importance of understanding that ExperimenTor and

Shadow have fundamentally different approaches to experimentation: Shadow simulates

all network properties including jitter and packet loss on links due to the presence of

background Internet traffic; and ExperimenTor emulates link properties simply as a

function of the Tor traffic load, ignoring any effects due to background Internet traffic.

As in our experiments, differences between other tools may also contribute to the differ-

ences in experimental performance and load, and should be considered when analyzing

results.
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4.6 Summary

This chapter explored modeling the distributed Tor network. We provided precise and

detailed specifications of our modeling choices and their effect on the resulting experi-

mental environment. We validated our model by instantiating it in two state-of-the-art

Tor experimentation tools: Shadow[62] and ExperimenTor[65]. We compared network

performance and network load from our experiments to real Tor data and found that

our model leads to environments that characterize the live Tor network well. Finally,

we provided insights into the lessons we learned while replicating our experiments with

multiple tools.
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5.1 Introduction

Recall that Tor supports hundreds of thousands of Tor clients that route data through

only a few thousand bandwidth-limited Tor relays. The total demand for resources from

such a large set of clients far outweighs the supply required for the network to operate

efficiently. The high load clients place on the network increases the effect of network

bottlenecks and results in congestion and performance problems. These problems in-

herently reduce Tor’s usability, limiting both its scalability and its ability to support a

larger and more diverse set of clients. Since Tor’s usability correlates with its perfor-

mance, a slower network leads to a smaller and less diverse network that also provides

weaker anonymity to its users [25].

Tor’s high network utilization has offered a unique opportunity to investigate its

protocol and algorithmic inefficiencies [24]. One area of focus has been on Tor’s circuit

scheduling algorithm, which is used by relays to determine the order in which client-

constructed circuits are allowed to send data when there are resources available for

doing so. Tor’s original design used a traditional round-robin scheduler [84, 85], however,

analysis of Tor client traffic [28] provided a key insight that fueled the development of an

alternative scheduling strategy. The study found that BitTorrent file sharing accounted

for roughly forty percent of the traffic Tor transfers, but only about five percent of the

connections. Under a fair round-robin scheduler, this small set of high bandwidth clients

were consuming an unfair share of network resources.

Recognizing that there are different types of clients with different performance re-

quirements, Tang and Goldberg introduced a new circuit scheduler that prioritizes cir-

cuits with the lowest exponentially-weighted moving average (EWMA) throughput [33].

Their goal was to improve performance for latency-sensitive web clients with bursty

traffic characteristics without reducing the long-term throughput of bulk traffic clients.

They performed small-scale experiments that showed the new scheduler was able to

improve performance for bursty traffic.

There are some shortcomings to the EWMA scheduler and its evaluation. First,

the extent to which performance improves when all relays in the network are using the

new scheduler is unclear, as Tang and Goldberg did not attempt experiments on a full-

network deployment. Second, there is no way to control or specify the extent to which
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qualifying traffic should get prioritized: bulk clients whose traffic has been waiting long

enough will be sent ahead of bursty traffic, even if this is not desired. Finally, the

EWMA scheduler provides some notion of priority for bursty traffic, but does not allow

performance adjustments between various other classes of traffic.

To overcome these shortcomings, this chapter first explores and builds upon the

work of Tang and Goldberg: using Shadow, we investigate scheduling as a technique to

improve client performance. In Section 5.2 we explore the EWMA circuit scheduler [33]

which prioritizes bursty circuits ahead of bulk circuits. We confirm previous results

by re-evaluating EWMA when enabled on small single-circuit topologies consisting of

three relays – similar to those tested by Tang and Goldberg. However, our results from a

full-network deployment of the scheduler in a scaled topology indicate that performance

benefits are highly dependent on network load and a properly tuned half-life. We found

that the scheduler reduces performance for Tor clients under certain network loads,

a significant result since the EWMA scheduler is currently enabled by default for all

sufficiently updated Tor relays.

Section 5.3 then explores the differentiated services architecture [86] in the context

of the Tor network by evaluating two proportional differentiation [34] circuit schedulers

– a proportional delay differentiation scheduler based on work by Dovrolis et al. [87]

and a proportional throughput differentiation scheduler based on Tang and Goldberg’s

EWMA algorithm. We evaluate these schedulers using both single-circuit and full-

network deployments in Shadow. We explore and discuss the fundamental extent to

which scheduling may be used to improve Tor client performance: we evaluate our

schedulers using both perfect classification as well as a simple classification heuristic.

We find that scheduling can provide only modest performance improvements for Tor

clients.

5.2 EWMA Circuit Scheduling

We now demonstrate Shadow’s powerful capabilities by exploring a Tor circuit schedul-

ing algorithm recently proposed and integrated into the Tor software.
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5.2.1 EWMA Scheduling Model

In Tor, whenever there is room in an output buffer, the circuit scheduler must make a

decision about which circuit to flush. Tor’s original design used a round-robin algorithm

for making such decisions. Recently, an algorithm based on the Exponentially-Weighted

Moving Average (EWMA) of cells sent in each circuit was proposed and incorporated

into Tor, and has since become the default scheduling algorithm used by Tor relays. This

section attempts to validate the results originally obtained by Tang and Goldberg [33].

In order to prioritize bursty circuits, Tang and Goldberg’s scheduler uses an EWMA

throughput to represent “the number of cells a circuit has sent recently.” This metric

represents an average throughput of a circuit, but decays over time. This means that

cells sent longer in the past will count less towards the EWMA metric than cells sent

recently. The metric is computed by keeping a count n of the number of cells sent by

a circuit. When a scheduling decision needs to be made, the EWMA scheduler chooses

the circuit with the lowest cell count and updates n. The cell count n is decayed after

time interval ∆t using half life H (after time H, the count is reduced by half):

n′ = n · 0.5
∆t
H (5.1)

Bursty traffic (web) should have lower EWMA cell counts and should be prioritized over

steady traffic (bulk).

5.2.2 EWMA in Single-Circuit Topology

Tang and Goldberg evaluated the EWMA algorithm by creating a congested circuit on

a synthetic PlanetLab network and measuring performance of web downloads. Since the

middle node was a circuit bottleneck, the benefits of EWMA for reducing web download

times were clear. Unfortunately, results for bulk downloads during this experiment were

not given.

We perform a similar “bottleneck” experiment in Shadow. We configure a circuit

consisting of a single entry, middle, and exit relay. Two bulk clients continuously

download 5 MiB files to congest the circuit. Ten minutes after booting these “con-

gestion” clients, two “measurement” clients are started and download for an hour: a

third bulk client and a web client that waits 11 seconds (the median think-time for web
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browsers [58]) between 320 KiB file downloads. The middle relay is configured as a

circuit bottleneck with a 1 MiB/s connection while all other nodes (relays, clients, and

server) have 10 MiB/s connections.

We run the above experiment modifying only the scheduling algorithm. We test both

the round-robin scheduler and the EWMA scheduler with a Tor CircuitPriorityHalflife

configuration of 66 as in [33]. Relay buffer statistics [88] are shown in Figures 5.1(a)

and 5.1(b). Notice a significant increase in traffic at the ten-minute mark, at which

point the “measurement” clients start downloading. Figure 5.1(a) shows that the num-

ber of processed cells is similar for all relays, except occasionally the exit relay processes

fewer cells due to middle relay congestion. Figure 5.1(b) shows that the circuit queues

increase for the exit and middle relay while the entry relay’s circuit queues are empty

due to sufficient bandwidth to immediately forward data to the client.

Figures 5.1(c) and 5.1(d) show the performance results obtained from the web client

for both schedulers. As expected, the time to the first byte of the data payload and the

time to complete a download are both reduced for the web client, since bursty traffic

gets prioritized ahead of the bulk traffic. The time to first byte for the “measurement”

bulk downloader in Figure 5.1(e) also improves for a large fraction of the downloads

because each new download originating from a new circuit will be prioritized ahead

of the “congestion” bulk downloads. However, after downloading enough data, the

“measurement” bulk client loses its priority over the “congestion” bulk clients and the

time to first byte converges for each scheduler.

Tang and Goldberg claim that, according to Little’s Law [89], bulk transfers will

not be negatively affected while using the new circuit scheduler. While this may be

theoretically true, it is not clear that it will hold in practice. The authors find that

Little’s Law holds when a single relay in the live Tor network uses the EWMA scheduler:

their results show that bulk download times are not significantly different for each

scheduler. However, our results in Figure 5.1(f) indicate otherwise. Bulk download

times are noticeably worse for the EWMA scheduler, with a significant increase at

around the 40th percentile. This increase again happens when the “measurement” bulk

client loses its priority over the “congestion” bulk clients, suggesting that a deeper

analysis of the EWMA scheduling algorithm in different network environments may be

appropriate.
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(f) 5 MiB, Last Byte

Figure 5.1: Seven-node single-circuit experiment similar to that performed by Tang and
Goldberg [33]. The number of cells processed (a) and queued (b) increases at Time=10,
when the measurement clients begin downloading. The EWMA scheduler improves
responsiveness for bursty traffic (c), (d), and (e) but, contrary to the author’s claims,
decreases performance for bulk downloads (f).
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5.2.3 EWMA in Full-Network Deployment

Tang and Goldberg’s experiments suffer from a major limitation of scale: the experi-

ments were run either on three-node PlanetLab topologies, or in the live Tor network

with only a single relay scheduling with the EWMA algorithm. Although they provide

results for what a single relay might expect when switching scheduling algorithms, they

do not consider the network-wide effects of a full-network deployment.

We explore the performance gains possible with the EWMA scheduler through a full

network deployment in Shadow. We test the EWMA circuit scheduler with a range of

half-life configurations and compare performance to the round-robin scheduler used in

vanilla Tor. As in Section 3.5.3, we use 200 servers, 50 relays and 950 web clients for our

experiments. To analyze the effects of various network loads on the scheduler, we run

separate experiments configured with each of 25, 50, and 100 bulk clients. The adjusted

load is significant since bulk clients account for a large fraction of network traffic. To

reduce random variances, we run each experiment five times and show the cumulative

results of each configuration by aggregating the results of all five experiments. Our

results are shown in Figure 5.2 and Figure 5.3.

Under a “light” load of 25 bulk clients, Figures 5.2(a), 5.2(b), 5.3(a), and 5.3(b)

show that the EWMA circuit scheduler reduces performance over vanilla Tor for all

clients, independent of the configured half-life. Bulk download times seem to be affected

the most (5.3(b)), but our experiments indicate there is also a significant reduction in

responsiveness for web clients (5.2(a)).

Under a “medium” load of 50 bulk clients, Figures 5.2(c), 5.2(d), 5.3(c), and 5.3(d)

show that there are half-life configurations that still reduce performance when compared

to vanilla Tor. The 30 and 90 second EWMA half-life configurations appear to improve

performance for web clients (5.2(c) and 5.2(d)), but performance for bulk clients is

either reduced or shows less improvement (5.3(c), 5.3(c)). Performance is reduced for

all clients when using a 3 second half-life.

Finally, Figures 5.2(e), 5.2(f), 5.3(e), and 5.3(f) show performance under a “heavy”

load of 100 bulk clients. Under heavy load, the EWMA scheduler appears to perform

the best for web clients (5.2(e) and 5.2(f)) while bulk clients see no improvements over

the vanilla Tor (round-robin) scheduler (5.3(e) and 5.3(f)).

We conclude from our results that the EWMA scheduler should not necessarily be
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(b) 320 KiB, Last Byte, Light Load
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(c) 320 KiB, First Byte, Medium Load
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(e) 320 KiB, First Byte, Heavy Load
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(f) 320 KiB, Last Byte, Heavy Load

Figure 5.2: Performance comparison for the 950 web clients (320 KiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively, in full-
network deployments using the EWMA circuit scheduler and the vanilla Tor round-
robin circuit scheduler. While the EWMA circuit scheduler works best under heavily
loaded networks, there are half-life configurations that reduce client performance.
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(a) 5 MiB, First Byte, Light Load
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(b) 5 MiB, Last Byte, Light Load
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(c) 5 MiB, First Byte, Medium Load
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(d) 5 MiB, Last Byte, Medium Load
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(e) 5 MiB, First Byte, Heavy Load

0 50 100 150 200
Bulk Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

ewma3

ewma30

ewma90

(f) 5 MiB, Last Byte, Heavy Load

Figure 5.3: Performance comparison for the bulk clients (5 MiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively, in full-
network deployments using the EWMA circuit scheduler and the vanilla Tor round-
robin circuit scheduler. While the EWMA circuit scheduler works best under heavily
loaded networks, there are half-life configurations that reduce client performance.
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used under all network conditions since it is not clear that performance will always

improve. When improvements over the round-robin scheduler are possible, they may be

insignificant or depend on a correctly configured half-life. Tang and Goldberg find that

low half-life values close to 0 and high values close to 100 result in little improvement

when compared to unprioritized, vanilla Tor. We find this to be true under lighter

loads, but Figure 5.2 shows that larger half-life values result in better performance

for more heavily loaded networks. Our results illustrate that performance benefits are

heavily dependent on network traffic patterns, and we stress the importance of frequently

assessing the network to assist in determining appropriate half-life values over time. We

suggest that more analysis is required to determine if the EWMA scheduler actually

improves performance in the live Tor network, and if relays should enable it by default.

5.3 Circuit Scheduling with Proportional Differentiation

This section explores the differentiated services architecture (DiffServ) [86] as a way to

improve control over the scheduling decisions made by Tor relays.

5.3.1 Proportional Differentiation Model

We aim to design algorithms that ensure relative quality metrics between qualifying and

non-qualifying traffic using a priority scheduling mechanism based on the proportional

differentiation model [34]. The model aims to provide predictable and controllable per-

formance: quality metrics should be consistently proportional between classes and the

proportions should be adjustable.

In the proportional differentiation model, traffic is separated into N classes labeled

c1, . . . , cN . The model states that the desired quality measurement qi for each class ci

should be proportional to the other classes, where the proportions are configured with

a differentiation parameter pi for each class. The classes should be scheduled such that

the relative quality of each class follow the configured differentiation parameters:

∀i ∈ [N ],∀j ∈ [N ] :
qi(t, t+ σ)

qj(t, t+ σ)
=
pi
pj

(5.2)

where p1 < p2 < . . . < pN , pi/pj defines the desired quality proportion between class

ci and class cj , and σ is the measurement timescale. Note that proportional quality
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differentiation is only defined under the condition that the model is feasible (i.e., when

the amount and distribution of traffic allow a work-conserving scheduler to effect a

difference). We will consider two schedulers that operate in this model.

Proportional Delay

Dovrolis et al. explore Proportional Delay Differentiation (PDD) and a priority sched-

uler that differentiates classes using queuing delay (packet waiting time) as the quality

metric [87]. The scheduler utilizes two statistics to determine which class ci to schedule

at time t: the queuing delay Di(t) of the longest waiting packet in ci, and the long-term

average delay δi(t) of all previously scheduled packets (i.e., the average queuing delay

of packets at the moment they are scheduled). The quality metric under Proportional

Delay Differentiation becomes:

q′i(t) = Di(t) · f + δi(t) · (1− f) (5.3)

where f is an adjustable fraction. A priority is computed for each ci as P ′i (t) =

q′i(t)/pi(t), and the longest waiting packet from the class with the maximum computed

priority is scheduled next. Once a class is selected, the delay differentiation approach is

essentially first-come, first-served scheduling among the circuits belonging to that class

since each packet’s delay timer starts when the packet enters the queue.

Proportional Throughput

We also explore an alternative approach that may be better suited to scheduling in

the Tor network. In particular, prioritizing circuits with a low exponentially-weighted

moving average (EWMA) circuit throughput may improve performance of bursty traffic

while minimally harming bulk traffic with higher desired long-term throughput [33].

Adhering to the model introduced by Dovrolis et al. , we explore Proportional Through-

put Differentiation (PTD) and a scheduler that differentiates classes using the EWMA

throughput as the quality metric. We define the quality metric at time t using the

EWMA throughput of the lowest throughput circuit Ti(t) and the long-term EWMA
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throughput τi(t) of previously scheduled circuits (i.e., the average of the average through-

put of circuits at each moment they are scheduled):

q′′i (t) = Ti(t) · f + τi(t) · (1− f) (5.4)

where f remains adjustable. The priority is computed for each ci as P ′′i (t) = q′′i (t) ·pi(t),
and the circuit with the lowest EWMA throughput from the class with the minimum

computed priority is scheduled next.

Assigning Classes

The DiffServ model outlined above requires that circuits are assigned to classes in order

to differentiate performance based on quality metrics. Unfortunately, classifying traffic

with deep packet inspection is not possible with encrypted Tor traffic, and requiring

clients to specify their class may weaken anonymity. Instead, statistical fingerprinting

techniques [90, 91, 92] may be used to classify traffic based solely on its statistical

properties without input from other network nodes. Note that supervised classification

techniques have been previously explored in the context of the Tor network [93], but

unsupervised classification is still an open research problem.

In the evaluation of our schedulers, we will limit our focus to networks with “ideal”

and “heuristic” classification techniques. In “ideal” classification, each Tor circuit is

pre-labeled with its service class based on the type of traffic sent by the client. This

information will improve our understanding of the best possible performance we can

expect from our scheduling algorithms, and should only be worsened by less-accurate

classifiers. In “heuristic” classification, we will classify circuits based on the total amount

of data sent through them. Under the heuristic, all circuits start out assigned to the

highest priority class c1, and are reassigned to the next lower priority class ci+1 for

each additional B bytes sent through the circuit. A circuit’s priority will continue to

be lowered until the circuit is assigned to the lowest priority class cN . The proportional

differentiation parameters pi may be configured for each class as discussed above.
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5.3.2 DiffServ in Single-Circuit Topology

Using Shadow, we now investigate and compare our proportional differentiation sched-

ulers using “ideal” classification in a small single-circuit topology. Using a small topol-

ogy enables us to isolate each scheduler’s functionalities and better understand the

fundamental improvements they may provide.

Our single-circuit network consists of 4 relays configured so that all the clients select

the same relay as the circuit entry node, the same relay as the circuit exit node, and

the same relay as the circuit middle node (the middle node also acts as the directory

authority). The fourth node is only used to assist the relays in bootstrapping, but it is

not selected for any client circuits. We also configure 20 web clients and 20 bulk clients.

The web clients download 320 KiB files, pausing in between each download for a time

chosen uniformly at random between 1 and 20 seconds. The bulk clients continuously

download 5 MiB files without pausing. In each experiment, we configure all nodes to

use the same scheduler: we test each of the original round-robin scheduler (vanilla), the

EWMA scheduler of Tang and Goldberg (ewma), the proportional delay differentiation

scheduler (pdd), and the proportional throughput differentiation scheduler (ptd). The

clients download for 30 virtual minutes during the experiment, and we record the time

to download the first and last byte of each file as performance metrics.

Figure 5.4 shows the results obtained with the proportional delay differentiation

scheduler. The legend shows the various differentiation parameters (the desired ratios

between the quality metrics of each class) that we tested. With no differentiation

between classes (pdd-1), download times are worse than when scheduling with round-

robin for web users (Figure 5.4(b)) but better for bulk users (Figure 5.4(d)), suggesting

that bulk users may occasionally benefit from scheduling based on packet delays due to

the larger number of cells in flight at any time. Increasing the differentiation increases

priority for the web users in the first class (Figures 5.4(a) and 5.4(b)), but decreases

it for the second class (Figure 5.4(d)). Our pdd results indicate that we can precisely

specify the performance qualities we desire for each class, given that we satisfy the

feasibility condition of the proportional differentiation model.

Figure 5.5 shows the results obtained with the proportional throughput differentia-

tion scheduler. The legend again shows the various differentiation parameters that we
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Figure 5.4: Proportional delay differentiation (pdd) performance comparison in our
single-circuit network with 20 web clients and 20 bulk clients, using “ideal” classification,
for various proportional differentiation parameters. While pdd without differentiation
(pdd-1) prefers the bulk class slightly more than the round-robin scheduler, increasing
the differentiation increases priority for the web clients in the first class (b) and decreases
it for the bulk clients in the second class (d).
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Figure 5.5: Proportional throughput differentiation (ptd) performance comparison in
our single-circuit network with 20 web clients and 20 bulk clients, using “ideal” classi-
fication, for various proportional differentiation parameters. No differentiation reduces
ptd to EWMA (ptd-1). Increasing the differentiation increases priority for the web
clients in the first class (b) and decreases it for the bulk clients in the second class (d).
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tested. With no differentiation between classes (ptd-1), the ptd scheduler essentially re-

duces to EWMA scheduling with a slight bias towards the circuits in the class with the

lowest average throughput. This highlights the advantages of using EWMA throughput

as the underlying quality metric: unlike pdd, the ptd scheduler still prefers bursty traffic

to bulk traffic, even when there is no configured differentiation. As with pdd, increasing

the differentiation increases priority for the web users in the first class (Figured 5.5(a)

and 5.5(b)), but decreases it for the second class (Figure 5.5(d)). Our ptd results also

indicate that we can precisely specify the performance qualities we desire for each class,

given that we satisfy the feasibility condition of the proportional differentiation model.

5.3.3 DiffServ in Full-Network Deployment

This section investigates our proportional differentiation schedulers using “heuristic”

classification in a full-network topology. A full-network deployment will allow us to

better understand the improvements that the scheduling algorithms may provide in

practice under more realistic conditions.

Our full-network setup consists of 100 relays (40 exit relays and 60 non-exit relays),

1000 clients (950 web clients and 50 bulk clients), and 100 servers. The behavior of the

nodes is the same as specified above in Section 5.3.2. We also test a variety of client

loads by changing the number of bulk nodes from 50 in the “normal load” configuration

to 25 for a “light load” configuration, and 100 for a “heavy load” configuration.

Using our class assignment heuristic, we configure the pdd scheduler with 2 classes

with a differentiation ratio of 1000, while each client is reassigned to the next lower

priority class after sending 5 MiB through a circuit. We configure the ptd scheduler

with 4 classes with a differentiation ratio of 10, while each client is reassigned to the next

lower priority class after sending 1 MiB through a circuit. We choose these parameters

because they tend to perform the best in our experiments, noting that future work

should explore a deeper analysis of how the heuristics affect the scheduling mechanisms.

The results for “light”, “medium”, and “heavy” loads are shown in Figure 5.6 for

web clients and Figure 5.7 for bulk clients. Figure 5.6 shows that as the load gets

heavier (Figure 5.6(b) to Figure 5.6(d) to Figure 5.6(f)), the pdd scheduler tends to

degrade overall web client performance, whereas the ptd scheduler tends to consistently

outperform both the round-robin and ewma schedulers. This is expected: ptd is based



80

0 2 4 6 8 10 12 14 16
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
ewma
pdd
ptd

(a) 320 KiB, First Byte, Light Load

0 5 10 15 20 25
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
ewma
pdd
ptd

(b) 320 KiB, Last Byte, Light Load

0 2 4 6 8 10 12 14 16
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
ewma
pdd
ptd

(c) 320 KiB, First Byte, Medium Load

0 5 10 15 20 25
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla
ewma
pdd
ptd

(d) 320 KiB, Last Byte, Medium Load

0 2 4 6 8 10 12 14 16
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
ewma
pdd
ptd

(e) 320 KiB, First Byte, Heavy Load

0 5 10 15 20 25
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
ewma
pdd
ptd

(f) 320 KiB, Last Byte, Heavy Load

Figure 5.6: Performance comparison for the 950 web clients (320 KiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively, in full-network
deployments using the DiffServ, EWMA, and vanilla round-robin circuit schedulers.
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Figure 5.7: Performance comparison for the bulk clients (5 MiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively, in full-network
deployments using the DiffServ, EWMA, and vanilla round-robin circuit schedulers.
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on EWMA and we expect that web client performance should only increase by specifying

a differentiation ratio that prioritizes them over bulk clients; pdd is based on queuing

delays, and bulk clients that have clogged up a queue will have cells with higher delays

that occasionally get prioritized over web client cells. Figure 5.7 shows that both pdd

and ptd tend to achieve our goal of decreasing performance for bulk users. Although

pdd reorders some bulk cells in front of web cells, it does not seem to affect the total

download time for most bulk files.

5.4 Summary

As an example of the powerful capabilities of our simulation approach, we explored

the EWMA circuit priority scheduler recently proposed and currently used in Tor to

validate previous results and determine the effects of a network-wide deployment. We

found that correct half-life configurations are highly network and load dependent, and

that EWMA actually reduces performance for clients under certain network conditions.

Although enabled by default, it is unclear if the scheduler improves performance in the

live Tor network.

We then explored the proportional differentiation model as an alternative approach

to Tor circuit scheduling. We evaluated schedulers based on proportional delay and pro-

portional throughput in both single-circuit and full-network deployments, using ideal

and heuristic classification techniques. We found that the proportional differentiation

model provides mechanisms for precisely specifying the desired quality metrics for vari-

ous classes of service, and showed the extent to which we can improve performance for

bursty traffic.
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6.1 Introduction

Recall that Tor relays are run by volunteers located throughout the world and service

hundreds of thousands of Tor clients [27] with high bandwidth demands. A relay’s

utility to Tor is dependent on both the bandwidth capacity of its host network and

the bandwidth restrictions imposed by its operator (its possible to limit bandwidth

contributions). Although bandwidth donations vary widely, the majority of relays offer

less than 100 KiB/s and may become bottlenecks when chosen for a circuit. Bandwidth

bottlenecks lead to network congestion and impair client performance.

Bottlenecks are further aggravated by bulk users, which make up roughly five percent

of connections and forty percent of the bytes transferred through the network [28]. Bulk

traffic increases network-wide congestion and punishes interactive users as they attempt

to browse the web and run SSH sessions. Bulk traffic also constitutes a simple denial of

service (DoS) attack on the network as a whole: with nothing but a moderate number

of bulk clients, an adversary can intentionally significantly degrade the performance of

the entire Tor network for most users. This is a malicious attack as opposed to an

opportunistic use of resources without regard for the impact on legitimate users, and

could be used by censors [31] to discourage use of Tor. Bulk traffic effectively averts

potential users from Tor, decreasing both Tor’s client diversity and anonymity [25, 32].

There are three general approaches to alleviate Tor’s performance problems: increase

network capacity; optimize resource utilization; and reduce network load.

6.1.1 Increasing Capacity

One approach to reducing bottlenecks and improving performance is to add additional

bandwidth to the network from new relays. Previous work has explored recruiting new

relays by offering performance incentives to those who contribute [46, 47, 94]. While

these approaches show potential, they have not been deployed due to a lack of under-

standing of the anonymity and economic implications they would impose on Tor and its

users. It is unclear how an incentive scheme will affect users’ anonymity and motivation

to contribute: Acquisti et al. [45] discuss how differentiating users by performance may

reduce anonymity while competition may reduce the sense of community and convince

users that contributions are no longer warranted.
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New high-bandwidth relays may also be added by the Tor Project [12] or other orga-

nizations. While effective at improving network capacity, this approach is a short-term

solution that does not scale. As Tor increases speed and bandwidth, it will likely at-

tract more users. More significantly, it will attract more high-bandwidth and BitTorrent

users, resulting in a Tragedy of the Commons [95] scenario: the bulk users attracted to

the faster network will continue to leech the additional bandwidth.

6.1.2 Optimizing Resource Utilization

Another approach to improving performance is to better utilize the available network

resources. Tor’s path selection algorithm ignores the slowest small fraction of relays

while selecting from the remaining relays in proportion to their available bandwidth.

The path selection algorithm also ignores circuits with long build times [96], removing

the worst of bottlenecks and improving usability. Congestion-aware path selection [97]

is another approach that aims to balance load by using opportunistic and active client

measurements while building paths. However, low bandwidth relays must still be chosen

for circuits to mitigate anonymity problems, meaning there are still a large number of

circuits with tight bandwidth bottlenecks.

Tang and Goldberg previously explored modifications to the Tor circuit scheduler

in order to prioritize bursty (i.e. web) traffic over bulk traffic using an exponentially-

weighted moving average (EWMA) of relayed cells [33]. Early experiments show small

improvements at a single relay, but full-network experiments indicate that the new

scheduler has an insignificant effect on performance (see Section 5.2). It is unclear how

performance is affected when deployed to the live Tor network. This scheduling approach

attempts to better utilize the available bandwidth for specific traffic classes, but does not

reduce bottlenecks introduced by the massive amount of bulk traffic currently plaguing

Tor.

6.1.3 Reducing Load

All of the previously discussed approaches attempt to increase performance, but none of

them directly address performance degradation problems created by bulk traffic clients.



86

This chapter addresses these problems by adaptively throttling bulk data transfers at

the client’s entry into the Tor network.

We emphasize that throttling is fundamentally different than scheduling, and the

distinction is important in the context of the Tor network. Schedulers optimize the

utilization of available bandwidth by following policies set by the network engineer,

allowing the enforcement of fairness among flows (e.g. max-min fairness [85, 98] or

proportional fairness [99]). However, throttling may explicitly under-utilize local band-

width resources by intentionally imposing restrictions on clients’ throughput in order

to reduce aggregate network load.

By reducing bulk client throughput in Tor, we effectively reduce the bulk data trans-

fer rate through the network, resulting in fewer bottlenecks and a less congested, more

responsive Tor network that can better handle the burstiness of web traffic. Tor has re-

cently implemented token buckets, a classic traffic shaping mechanism [100], to statically

(non-adaptively) throttle client-to-guard connections at a given rate [38], but currently

deployed configurations of Tor do not enable throttling by default. Unfortunately, the

throttling algorithm implemented in Tor requires static configuration of throttling pa-

rameters: the Tor network must determine network-wide settings that work well and

update them as the network changes. Further, it is not possible to automatically tune

each relay’s throttling configuration with the current algorithm.

6.1.4 Contributions

To the best of our knowledge, we are the first to explore throttling algorithms that

adaptively adjust to the fluctuations and dynamics of Tor and each relay independently

without the need to adjust parameters as the network changes. We also perform the

first detailed investigation of the performance and anonymity implications of throttling

Tor clients.

In Section 6.2, we introduce and test three algorithms that dynamically and adap-

tively throttle Tor clients using a basic token bucket rate-limiter as the underlying

throttling mechanism. Our new adaptive algorithms use local relay information to dy-

namically select which connections get throttled and to adjust the rate at which those

connections are throttled. Adaptively tuned throttling mechanisms are paramount to

our algorithm designs in order to avoid the need to re-evaluate parameter choices as
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network capacity or relay load changes. Our bit-splitting algorithm throttles each con-

nection at an adaptively adjusted, but reserved and equal portion of a guard node’s

bandwidth, our flagging algorithm aggressively throttles connections that have histor-

ically exceeded the statistically fair throughput, and our threshold algorithm throttles

connections above a throughput quantile at a rate represented by that quantile.

We implement our algorithms in Tor1 and test their effectiveness at improving perfor-

mance in large scale, full-network deployments. Section 6.3 compares our algorithms to

static (non-adaptive) throttling under a varied range of network loads. We find that the

effectiveness of static throttling is highly dependent on network load and configuration

whereas our adaptive algorithms work well under various loads with no configuration

changes or parameter maintenance: web client performance was improved for every

parameter setting we tested. We conclude that throttling is an effective approach to

achieve a more responsive network.

Having shown that our adaptive throttling algorithms provide significant perfor-

mance benefits for web clients and have a profound impact on network responsiveness,

Section 6.4 analyzes the security of our algorithms under adversarial attack. We dis-

cuss several realistic attacks on anonymity and compare the information leaked by each

algorithm relative to unthrottled Tor. Against intuition, we find that throttling clients

reduces information leakage and improves network anonymity while minimizing the false

positive impact on honest users.

6.2 Throttling Client Connections

Client performance in Tor depends heavily on the traffic patterns of others in the system.

A small number of clients performing bulk transfers in Tor are the source of a large

fraction of total network traffic [28]. The overwhelming load these clients place on

the network increases congestion and creates additional bottlenecks, causing interactive

applications, such as instant messaging and remote SSH sessions, to lose responsiveness.

This section explores client throttling as a mechanism to prevent bulk clients from

overwhelming the network. Although a relay may have enough bandwidth to handle all

traffic locally, bulk clients that continue producing additional traffic cause bottlenecks

1Software patches for our algorithms have been made publicly available to the community [101].
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Figure 6.1: Throttling occurs at the connection between the client and guard to capture
all streams to various destinations.

at other low-capacity relays. The faster a bulk downloader gets its data, the faster it

will pull more into the network. Throttling bulk and other high-traffic clients prevents

them from pushing or pulling too much data into the network too fast, reducing these

bottlenecks and improving performance for the majority of users. Therefore, interactive

applications and Tor in general will become much more usable, attracting new users

who improve client diversity and anonymity.

We emphasize that throttling algorithms are not a replacement for congestion control

or scheduling algorithms, although each approach may cooperate to achieve a common

goal. Scheduling algorithms are used to manage the utilization of bandwidth, throttling

algorithms reduce the aggregate network load, and congestion control algorithms attempt

to do both. The distinction between congestion control and throttling algorithms is sub-

tle but important: congestion control reduces circuit load while attempting to maximize

network utilization, whereas throttling reduces network load in an attempt to improve

circuit performance by explicitly under-utilizing connections to bulk clients using too

many resources. Each approach may independently affect performance, and they may

be combined to improve the network.

6.2.1 Static Throttling

Recently, Tor introduced the functionality to allow entry guards to throttle connections

to clients [38] (see Figure 6.1). This client-to-guard connection is targeted because all

client traffic (using this guard) will flow over this connection regardless of the number

of streams or the destination associated with each.2 The implementation uses a token

bucket for each connection in addition to the global token bucket that already limits the

total amount of bandwidth used by a relay. The size of the per-connection token buckets

2This work does not consider modified Tor clients.
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can be specified using the PerConnBWBurst configuration option, and the bucket refill

rate can be specified by configuring the PerConnBWRate. The configured throttling rate

ensures that all client-to-guard connections are throttled to the specified long-term-

average throughput while the configured burst allows deviations from the throttling

rate to account for bursty traffic. The configuration options provide a static throttling

mechanism: Tor will throttle all connections using these values until directed otherwise.

Note that Tor does not enable or configure static throttling by default.

While static throttling is simple, it has two main drawbacks. First, static throttling

requires constant monitoring and measurements of the Tor network to determine which

configurations work well and which do not in order to be effective. We have found that

there are many configurations of the algorithm that cause no change in performance, and

worse, there are configurations that harm performance for interactive applications [102].

This is the opposite of what throttling is attempting to achieve. Second, it is not possible

under the current algorithm to auto-tune the throttling parameters for each Tor relay.

Configurations that appear to work well for the network as a whole might not necessarily

be tuned for a given relay (we will show that this is indeed the case in Section 6.3).

Each relay has very different capabilities and load patterns, and therefore may require

different throttling configurations to be most useful.

6.2.2 Adaptive Throttling

Given the drawbacks of static throttling, we now explore and present three new algo-

rithms that adaptively adjust throttling parameters according to local relay information.

This section details our algorithms while Section 6.3 explores their effect on client per-

formance and Section 6.4 analyzes throttling implications for anonymity.

There are two main issues to consider when designing a client throttling algorithm:

which connections to throttle and at what rate to throttle them. The approach dis-

cussed above in Section 6.2.1 throttles all client connections at the statically specified

rate. Each of our three algorithms below answers these questions adaptively by consid-

ering information local to each relay. Note that our algorithms dynamically adjust the

PerConnBWRate while keeping a constant PerConnBWBurst.3

3Our experiments [102] indicate that a 2 MiB burst is ideal as it allows directory requests to be
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Algorithm 3: Throttling clients by splitting bits.

1: B ← getRelayBandwidth()
2: L← getConnectionList()
3: N ← L.length()
4: if N > 0 then
5: splitRate← B

N
6: for i← 1 to N do
7: if L[i].isClientConnection() then
8: L[i].throttleRate← splitRate
9: end if

10: end for
11: end if

Bit-splitting

A simple approach to adaptive throttling is to split a guard’s bandwidth equally among

all active client connections and throttle them all at this fair split rate. Therefore the

PerConnBWRate will be adjusted as new connections are created or old connections are

destroyed: more connections will result in lower rates. No connection will be able to

use more than its allotted share of bandwidth unless it has unused tokens in its bucket.

Inspired by Quality of Service (QoS) work from communication networks [103, 104, 105],

bit-splitting will prevent bulk clients from unfairly consuming bandwidth and ensure

that there is “reserved” bandwidth for web clients.

Note that Internet Service Providers employ similar techniques to throttle their

customers, however, their client base is much less dynamic than the connections an

entry guard handles. Therefore, our adaptive approach is more suitable to Tor. We

include this algorithm in our analysis to determine what is possible with such a simple

approach.

Flagging Unfair Clients

The bit-splitting algorithm focuses on adjusting the throttle rate and applying this to

all client connections. Our next algorithm takes the opposite approach: configure a

static throttling rate and adjust which connections get throttled. The intuition behind

downloaded unthrottled during bootstrapping while also throttling bulk traffic relatively quickly. The
burst may need to be increased if the directory information grows beyond 2 MiB.
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Algorithm 4: Throttling clients by flagging bulk connections, considering a moving

average of throughput.

Require: flagRate,P,H
1: B ← getRelayBandwidth()
2: L← getConnectionList()
3: N ← L.length()
4: M← getMetaEWMA()
5: if N > 0 then
6: splitRate← B

N
7: M←M.increment(H, splitRate)
8: for i← 1 to N do
9: if L[i].isClientConnection() then

10: if L[i].EWMA >M then
11: L[i].f lag ← True
12: L[i].throttleRate← flagRate
13: else if L[i].f lag = True ∧ L[i].EWMA < P ·M then
14: L[i].f lag ← False
15: L[i].throttleRate← infinity
16: end if
17: end if
18: end for
19: end if

this approach is that if we can properly identify the connections that use too much

bandwidth, we can throttle them in order to maximize the benefit we gain per throttled

connection. Therefore, our flagging algorithm attempts to classify and throttle bulk

traffic while it avoids throttling web clients.

Since deep packet inspection is not desirable for privacy reasons, and is not pos-

sible on encrypted Tor traffic, we instead draw upon existing statistical fingerprinting

classification techniques [90, 91, 92] that classify traffic solely on its statistical proper-

ties. When designing the flagging algorithm, we recognize that Tor already contains a

statistical throughput measure for scheduling traffic on circuits using an exponentially-

weighted moving average (EWMA) of recently sent cells [33]. We can use the same

statistical measure on client connections to classify and throttle bulk traffic.

The flagging algorithm, shown in Algorithm 4, requires that each guard keeps an

EWMA of the number of recently sent cells per client connection. The per-connection
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cell EWMA is computed in much the same way as the per-circuit cell EWMA: whenever

the circuit’s cell counter is incremented, so is the cell counter of the connection to which

that circuit belongs. Note that clients can not affect others’ per-connection EWMA

since all of a client’s circuits are multiplexed over a single throttled guard-to-client

connection.4 The per-connection EWMA is enabled and configured independently of

its circuit counterpart.

We rely on the observation that bulk connections will have higher EWMA values

than web connections since bulk clients are steadily transferring data while web clients

“think” between each page download. Using this to our advantage, we can flag con-

nections as containing bulk traffic as follows. Each relay keeps a single separate meta-

EWMA M of cells transferred. M is adjusted by calculating the fair bandwidth split

rate as in the bit-splitting algorithm, and tracking its EWMA over time. M does not

correspond with any real traffic, but represents the upper bound of a connection-level

EWMA if a connection were continuously sending only its fair share of traffic through

the relay. Any connection whose EWMA exceedsM is flagged as containing bulk traffic

and throttled.

There are three main parameters for the algorithm. As mentioned above, a per-

connection half-lifeH allows configuration of the connection-level half-life independent of

that used for circuit scheduling. H affects how long the algorithm remembers the amount

of data a connection has transferred, and has precisely the same meaning as the circuit

priority half-life [33]. Larger half-life values increase the ability to differentiate bulk from

web connections while smaller half-life values make the algorithm more immediately

reactive to throttling bulk connections. We would like to allow for a specification of

the length of each penalty once a connection is flagged in order to recover and stop

throttling connections that may have been incorrectly flagged. Therefore, we introduce

a penalty fraction parameter P that affects how long each connection remains in a

flagged and throttled state. If a connection’s cell count EWMA falls below P ·M, its

flag is removed and the connection is no longer throttled. Finally, the rate at which

each flagged connection is throttled, i.e. the FlagRate, is statically defined and is not

adjusted by the algorithm.

4The same is not true for the unthrottled connections between relays since each of them contain
several circuits and each circuit may belong to a different client (see Chapter 2).
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Algorithm 5: Throttling clients considering the loudest threshold of connections.

Require: T ,R,F
1: L← getClientConnectionList()
2: N ← L.length()
3: if N > 0 then
4: selectIndex← floor(T ·N)
5: L← reverseSortEWMA(L)
6: thresholdRate← L[selectIndex].getMeanThroughput(R)
7: if thresholdRate < F then
8: thresholdRate← F
9: end if

10: for i← 1 to N do
11: if i ≤ selectIndex then
12: L[i].throttleRate← thresholdRate
13: else
14: L[i].throttleRate← infinity
15: end if
16: end for
17: end if

Note that the flagging parameters need only be set based on system-wide policy and

generally do not require independent relay tuning, but provides the flexibility to allow

individual relay operators to deviate from system policy if they desire.

Throttling Using Thresholds

Recall the two main issues a throttling algorithm must address: selecting which con-

nections to throttle and the rate at which to throttle them. Our bit-splitting algorithm

explored adaptively adjusting the throttle rate and applying this to all connections while

our flagging algorithm explored statically configuring a throttle rate and adaptively se-

lecting the throttled connections. We now describe our final algorithm which attempts

to adaptively address both issues.

The threshold algorithm also makes use of a connection-level cell EWMA, which is

computed as described above for the flagging algorithm. However, EWMA is used here

to sort connections by the loudest to quietest. We then select and throttle the loudest

fraction T of connections, where T is a configurable threshold. For example, setting

T to 0.1 means the loudest ten percent of client connections will be throttled. The
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selection is adaptive since the EWMA changes over time according to the amount of

bandwidth consumed by each connection.

We have adaptively selected which connections to throttle and now must determine

a throttle rate. To do this, we require that each connection tracks its throughput over

time. We choose the average throughput rate of the connection with the minimum

EWMA from the set of connections being throttled. For example, when T = 0.1 and

there are 100 client connections sorted from loudest to quietest, the chosen throttle rate

is the average throughput of the tenth connection. Each of first ten connections is then

throttled at this rate. In our prototype, we approximate the throughput rate as the

average number of bytes transferred over the last R seconds, where R is configurable.

R represents the time period between which the algorithm re-selects the throttled con-

nections, adjusts the throttle rates, and resets each connection’s throughput counters.

There is one caveat to the algorithm as described above. In our experiments in

Section 6.3, we noticed that occasionally the throttle rate chosen by the threshold algo-

rithm was zero. This would happen if the mean throughput of the threshold connection

(line 6 in Algorithm 5) did not send data over the last R seconds. To prevent a throttle

rate of zero, we added a parameter to statically configure a throttle rate floor F so that

no connection is throttled below F . Algorithm 5 details threshold adaptive throttling.

6.3 Experiments

In this section we explore the performance benefits possible with each throttling algo-

rithm specified in Section 6.2. We perform experiments with Shadow [51, 52, 62], an

accurate and efficient discrete event simulator that runs real Tor code over a simulated

network. Shadow allows us to run an entire Tor network on a single machine and con-

figure characteristics such as network latency, bandwidth, and topology. Since Shadow

runs real Tor, it accurately characterizes application behavior and allows us to focus

on experimental comparison of our algorithms. A direct comparison between Tor and

Shadow-Tor performance is presented in Chapter 4 [62].
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6.3.1 Experimental Setup

Using Shadow, we configure a private Tor network with 200 HTTP servers, 950 Tor

web clients, 50 Tor bulk clients, and 50 Tor relays. The distribution of clients in our

experiments approximates that found by McCoy et al. [28]. All of our nodes run inside

the Shadow simulation environment.

In our experiments, each client node runs Tor in client-only mode as well as an HTTP

client application configured to download over Tor’s SOCKS proxy available on the local

interface. Each web client downloads a 320 KiB file5 from a randomly selected one of

our HTTP servers, and pauses for a length of time drawn from the UNC “think time”

data set [58] before downloading the next file. Each bulk client repeatedly downloads a

5 MiB file from a randomly selected HTTP server without pausing. Clients track the time

to the first and the last byte of the download as indications of network responsiveness

and overall expected client performance.

Tor relays are configured with bandwidth parameters according to a Tor network

consensus document.6 We configure our network topology and latency between nodes

according to the geographical distribution of relays and pairwise PlanetLab node ping

times. Our simulated network mirrors a previously published Tor network model [62]

that has been compared to and shown to closely approximate the load of the live Tor

network [30].

We focus on the time to the first data byte for web clients as a measure of network

responsiveness, and the time to the last data byte—the download time—for both web

and bulk clients as a measure of overall performance. In our results, “vanilla” represents

unmodified Tor using a round-robin circuit scheduler and no throttling—the default

settings in the Tor software—and can be used to compare relative performance between

experiments. Each experiment uses network-wide deployments of each configuration. To

further reduce random variances, we ran all configurations five times each. Therefore,

every curve on every CDF shows the cumulative results of five experiments.

5The average webpage size reported by Google web metrics [80].
6Retrieved on 2011-04-27 and valid from 03-06:00:00
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Figure 6.2: Performance comparison for the 950 web clients (320 KiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively.
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Figure 6.3: Performance comparison for the bulk clients (5 MiB) under “light,”
“medium,” and “heavy” loads of 25, 50, and 100 bulk clients, respectively.
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6.3.2 Results

Our results focus on the algorithmic configurations that we found to maximize web

client performance [102] while we show how the algorithms perform when the network

load varies from light (25 bulk clients) to medium (50 bulk clients) to heavy (100 bulk

clients). The experimental setup is otherwise unmodified from the model described

above. Running the algorithms under various networks with various loads allows us to

highlight the unique and novel features each provides.

Figure 6.2 shows web client performance and Figure 6.3 shows bulk client perfor-

mance for our algorithms. The time to first byte indicates network responsiveness for

web clients while the download time indicates overall client performance for web and

bulk clients. Client performance is shown for the lightly loaded, normally loaded, and

heavily loaded networks. Overall, Figure 6.3 shows that static throttling results in the

least amount of bulk traffic throttling while Figure 6.2 shows that it provides the lowest

benefit to web clients. For the bit-splitting algorithm, Figure 6.2 shows improvements

over static throttling for web clients for both time to first byte and overall download

times, while Figure 6.3 shows that download times for bulk clients are also slightly in-

creased. The flagging and the threshold throttling algorithms perform somewhat more

aggressive throttling of bulk traffic and therefore also provide the greatest improvements

in web client performance.

We find that each algorithm is effective at throttling bulk clients independent of

network load, as evident in Figures 6.3(b), 6.3(d) and 6.3(f). However, performance

benefits for web clients vary slightly as the network load changes. When the number

of bulk clients is halved, throughput in Figure 6.2(b) is fairly similar across algorithms.

However, when the number of bulk clients is doubled, responsiveness in Figure 6.2(e)

and throughput in Figure 6.2(f) for both the static throttling and the adaptive bit-

splitting algorithm lag behind the performance of the flagging and threshold algorithms.

Static throttling would likely require a reconfiguration of throttling parameters while

bit-splitting throttles less effectively than our flagging and threshold algorithms.

As seen in Figures 6.2(a), 6.2(c), and 6.2(e), as the load changes, the strengths of each

algorithm become apparent. The flagging and threshold algorithms stand out as the

best approaches for both web client responsiveness and throughput, and Figures 6.3(b),

6.3(d), and 6.3(f) show that they are also most aggressive at throttling bulk clients.



99

Table 6.1: Total data downloaded in our simulations by client type. Throttling reduces
the bulk traffic share of the load on the network. The flagging algorithm is the best
at throttling bulk traffic under light, medium, and heavy loads of 25, 50, and 100 bulk
clients, respectively.

vanilla static split flag thresh
li

gh
t Data (GiB) 88.3 80.3 78.3 72.1 69.8

Web (%) 74.5 83.7 85.9 92.7 90.1
Bulk (%) 25.5 16.3 14.1 7.3 9.9

m
ed

iu
m Data (GiB) 92.2 88.6 84.7 77.7 76.3

Web (%) 65.8 72.4 75.0 86.2 82.8
Bulk (%) 34.2 27.6 25.0 13.8 17.2

h
ea

v
y Data (GiB) 94.7 91.1 85.0 81.7 85.0

Web (%) 55.8 60.5 64.3 75.4 71.2
Bulk (%) 44.2 39.5 35.7 24.6 28.8

The flagging algorithm appears very effective at accurately classifying bulk connections

regardless of network load. The threshold algorithm maximizes web client performance

in our simulations among all loads and all algorithms tested, since it effectively throttles

the worst bulk clients while utilizing extra bandwidth when possible. Both the threshold

and flagging algorithms perform well over all network loads tested, and their usage

in Tor would require little-to-no maintenance while providing significant performance

improvements for web clients.

Aggregate download statistics are shown in Table 6.1. The results indicate that we

are approximating the load distribution measured by McCoy et al. [28] reasonably well.

The data also indicates that as the number of bulk clients in our simulation increases,

so does the total amount of data downloaded and the bulk fraction of the total as

expected. The data also shows that all throttling algorithms reduce the total network

load. Static throttling reduces load the least, while our adaptive flagging algorithm is

both the best at reducing both overall load and the bulk percentage of network traffic.

Each of our adaptive algorithms are better at reducing load than static throttling, due

to their ability to adapt to network dynamics. The relative difference between each

algorithm’s effectiveness at reducing load roughly corresponds to the relative difference

in web client performance in our experiments, as we discussed above.
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6.3.3 Discussion

The best algorithm for Tor depends on multiple factors. Although not maximizing web

client performance, bit-splitting is the simplest, the most efficient, and the most network

neutral approach (every connection is allowed the same portion of a guard’s capacity).

This “subtle” or “delicate” approach to throttling may be favorable if supporting mul-

tiple client behaviors is desirable. Conversely, the flagging algorithm may be used to

identify a specific class of traffic and throttle it aggressively, creating the potential for

the largest increase in performance for unthrottled traffic. We are currently explor-

ing improvements to our statistical classification techniques to reduce false positives

and to improve the control over traffic of various types. For these reasons, we feel the

bit-splitting and flagging algorithms will be the most useful in various situations. We

suggest that perhaps bit-splitting is the most appropriate throttling algorithm to use

initially, even if something more aggressive is desirable in the long term.

While requiring little maintenance, our algorithms were designed to use only local

relay information. Therefore, they are incrementally deployable while relay operators

may choose the desired throttling algorithm independent of others. Our algorithms are

already implemented in Tor and software patches are available [101].

6.4 Analysis and Discussion

Having shown the performance benefits of throttling bulk clients in Section 6.3, we

now analyze the security of throttling against adversarial attacks on anonymity. We

will discuss the direct impact of throttling on anonymity: what an adversary can learn

when guards throttle clients and how the information leaked affects the anonymity of

the system. We lastly discuss potential strategies clients may use to elude the throttles.

Before exploring practical attacks, we introduce two techniques an adversary may

use to gather information about the network given that a throttling algorithm is enabled

at all guards. Similar techniques used for throughput-based traffic analysis outside the

context of throttling are discussed in detail by Mittal et al. [23]. Discussion about the

security of our throttling algorithms in the context of practical attacks will follow.
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Figure 6.4: Security analysis of our throttling algorithms. (a) Information leaked by
learning circuit throughputs. (b) Information leaked by learning guards’ throttle rates.
(c) An adversary may discover the throttle rate by probing guards.
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6.4.1 Gathering Information

Our analysis uses the following terminology. At time t, the throughput of a connection

between a client and a guard is λt, the rate at which the client will be throttled is

αt, and the allowed data burst is β. Note that, as consistent with our algorithms, the

throttle rate may vary over time but the burst is a static system-wide parameter.

Probing Guards

Using the above terminology, a connection is throttled if, over the last s seconds, its

throughput exceeds the allowed initial burst and the long-term throttle rate:

t∑
k=t−s

(λk) ≥ β +

t∑
k=t−s

(αk) (6.1)

A client may perform a simple technique to probe a specific guard node and determine

the rate at which it gets throttled. The client may open a single circuit through the

guard, selecting other high-bandwidth relays to ensure that the circuit does not contain

a bottleneck. Then, it may download a large file and observe the change in throughput

after receiving a burst of β payload bytes.

If the first β bytes are received at time t1 and the download finishes at time t2 ≥
t1, the throttle rate at any time t in this interval can be approximated by the mean

throughput leading up to t:

∀t ∈ [t1, t2], αt ≈
∑t

k=t1
(λk)

t− t1
(6.2)

Therefore, αt2 approximates the actual throttle rate. Note that this approximation may

under-estimate the actual throttle rate if the throughput falls below the throttle rate

during the measured interval.

We simulate probing in Shadow [51, 52, 62] to show its effectiveness against the static

throttling algorithm. As apparent in Figure 6.4(c), the throttle rate was configured at

5 KiB/s and the burst at 2 MiB. With enough resources, an adversary may probe every

guard node to form a complete list of throttle rates.
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Testing Circuit Throughput

A web server may determine the throughput of a connecting client’s circuit by using

a technique similar to that presented by Hopper et al. [19]. When the server gets an

HTTP request from a client, it may inject either special JavaScript or a large amount

of garbage HTML into a form element included in the response. The injected code will

trigger a second client request after the original response is received. The server may

adjust the amount of returned data and measure the time between when it sent the first

response and received the second request to approximate the throughput of the circuit.

6.4.2 Adversarial Attacks

We now explore several adversarial attacks in the context of client throttling algo-

rithms, and how an adversary may use those attacks to learn information and affect the

anonymity of a client.

Attack 1

In our first attack, an adversary obtains a distribution on throttle rates by probing all

Tor guard relays. We assume the adversary has resources to perform such an attack,

e.g. by utilizing a botnet or other distributed network such as PlanetLab [48]. The

adversary then obtains access to a web server and tests the throughput of a target

circuit. With this information, the adversary may reduce the anonymity set of the

circuit’s potential guards by eliminating those whose throttle rate is inconsistent with

the measured throughput.

This attack is somewhat successful against all of the throttling algorithms we have

described. For bit-splitting, the anonymity set of possible guard nodes will consist of

those whose bandwidth and number of active connections would throttle to the through-

put of the target circuit or higher. By running the attack repeatedly over time, an

intersection will narrow the set to those whose throttle rate is consistent with the target

circuit throughput at all measured times.

The flagging algorithm throttles all flagged connections to the same rate system-

wide. (We assume here that the set of possible guards is already narrowed to those
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whose bandwidth is consistent with the target circuit’s throughput irrespective of throt-

tling.) A circuit whose throughput matches the system-wide rate is either flagged at

some guard or just coincidentally matches the system-wide rate and is not flagged be-

cause its EWMA has remained below the splitRate (see Algorithm 4) for its guard

long enough to not be flagged or become unflagged. The throttling rate is thus not

nearly as informative as for bit-splitting. If we run the attack repeatedly however, we

can eliminate from the anonymity set any guard such that the EWMA of the target

circuit should have resulted in a throttling but did not. Also, if the EWMA drops to

the throttling rate at precise times (ignoring unusual coincidence), we can eliminate any

guard that would not have throttled at precisely those times. Note that this determi-

nation must be made after the fact to account for the burst bucket of the target circuit,

but it can still be made precisely.

The potential for information going to the attacker in the threshold algorithm is

a combination of the potential in each of the above two algorithms. The timing of

when a circuit gets throttled (or does not when it should have been) can narrow the

anonymity set of entry guards as in the flagging algorithm. Once the circuit has been

throttled, then any fluctuation in the throttling rate that separates out the guard nodes

can be used to further narrow the set. Note that if a circuit consistently falls below

the throttling rate of all guards, an attacker can learn nothing about its possible entry

guard from this attack. Attack 2 considerably improves the situation for the adversary.

We simulated this attack in Shadow. An adversary probes all guards and forms

a distribution on the throttle rate at which a connection would become throttled. We

then form a distribution on circuit throughputs over each minute, and remove any guard

whose throttle rate is outside a range of one standard deviation of those throughputs.

Since there are 50 guards, the maximum entropy is log2(50) ≈ 5.64; the entropy lost

by this attack for various throttling algorithms relative to vanilla Tor is shown in Fig-

ure 6.4(a). We can see that the static algorithm actually loses no information, since all

connections are throttled to the same rate, while vanilla Tor without throttling actually

loses more information than any of the throttling algorithms. Therefore, the distribution

on guard bandwidth leaks more information than throttled circuits’ throughputs.
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Attack 2

As in Attack 1, the adversary again obtains a distribution on throttle rates of all guards

in the system. However, the adversary slightly modifies its circuit testing by contin-

uously sending garbage responses. The adversary adjusts the size of each response so

that it may compute the throughput of the circuit over time and approximates the rate

at which the circuit is throttled. By comparing the estimated throttle rate to the dis-

tribution on guard throttle rates, the adversary may again reduce the anonymity set by

removing guards whose measured throttle rate is inconsistent with the estimated rate.

For bit-splitting, by raising and lowering the rate of garbage sent, the attacker

can match this with the throttled throughput of each guard. The only guards in the

anonymity set would be those that share the same throttling rate that matches the

flooded circuit’s throughput at all times. To maximize what he can learn from flagging,

the adversary should raise the EWMA of the target circuit at a rate that will allow him

to maximally differentiate guards with respect to when they would begin to throttle a

circuit. If this does not uniquely identify the guard, he can also use the rate at which

he diminishes garbage traffic to try to learn more from when the target circuit stops

being throttled. As in Attack 1 from the threshold algorithm, the adversary can match

the signature of both fluctuations in throttling rate over time and the timing of when

throttling is applied to narrow the set of possible guards for a target circuit.

We simulated this attack using the same data set as Attack 1. Figure 6.4(b) shows

that a connection’s throttle rate generally leaks slightly more information than its

throughput. As in Attack 1, guards’ bandwidth in our simulation leaks more infor-

mation than the throttle rate of each connection for all but the flagging algorithm.

Attack 3

An adversary controlling two malicious servers can link streams of a client connecting to

each of them at the same time. The adversary uses the circuit testing technique to send

a response of β
2 bytes in size to each of two requests. Then, small “test” responses are

returned after receiving the clients’ second requests. If the throughput of each circuit

when downloading the “test” response is consistently throttled, then it is possible that

the requests are coming from the same client. This attack relies on the observation
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that all traffic on the same client-to-guard connection will be throttled at the same time

since each connection has a single burst bucket.

This attack is intended to indicate if and when a circuit is throttled, rather than

the throttling rate. It will therefore not be effective against bit splitting, but will work

against flagging or threshold throttling.

Attack 4

Our final attack is an active denial of service attack that can be used to confirm a

circuit’s entry guard with high probability. In this attack, the adversary attempts to

adjust the throttle rate of each guard in order to identify whether it carries a target

circuit. An adversary in control of a malicious server may monitor the throughput of

a target circuit over time, and may then open a large number of connections to each

guard node until a decrease in the target circuit’s throughput is observed. To confirm

that a guard is on the target circuit, the adversary can alternate between opening and

closing guard connections and continue to observe the throughput of the target circuit.

If the throughput is consistent with the adversary’s behavior, it has found the circuit’s

guard with high probability.

The one thing not controlled by the adversary in Attack 2 is a guard’s criterion for

throttling at a given time – splitRate for bit splitting and flagging and selectIndex

for threshold throttling (see Algorithms 3, 4, and 5). All of these are controlled by

the number of circuits at the guard, which Attack 4 places under the control of the

adversary. Thus, under Attack 4, the adversary will have precise control over which

circuits get throttled at which rate at all times and can therefore uniquely determine

the entry guard.

Note that all of Attacks 1, 2, and 4 are intended to learn about the possible entry

guards for an attacked circuit. Even if completely successful, this does not fully de-

anonymize the circuit. But since guards themselves are chosen for persistent use by

a client, they can add to pseudonymous profiling and can be combined with other

information, such as that uncovered by Attack 3, to either reduce anonymity of the

client or build a richer pseudonymous profile of it.



107

6.4.3 Eluding Throttles

A client may try multiple strategies to avoid being throttled. A client may instrument its

downloading application and the Tor software to send application data over multiple Tor

circuits. However, these circuits will still be subject to throttling since each of them uses

the same throttled TCP connection to the guard. A client may avoid this by attempting

to create multiple TCP connections to the guard. In this case, the guard may easily

recognize that the connection requests come from the same client and can either deny

the establishment of multiple connections or aggregate the accounting of all connections

to that client. A client may use multiple guard nodes and send application data over

each separate guard connection, but the client significantly decreases its anonymity by

subverting the guard mechanism [15, 13]. Finally, the client could run and use its own

guard node and avoid throttling itself. Although this strategy may actually benefit the

network since it reduces the amount of Tor’s capacity consumed by the client, the cost of

running a guard may be sufficient to prevent its wide-scale adoption (see Chapter 7 [46]

and Chapter 8 [106] for a discussion of incentives for running Tor relays).

Its important to note that the “cheating” techniques outlined above do not decrease

the security or performance below what unthrottled Tor provides. At worst, even if all

clients somehow manage to elude the throttles, performance and security both regress

to that of unthrottled Tor. In other words, throttling can only improve the situation

whether or not “cheating” occurs in practice.

6.5 Summary

This chapter analyzed client throttling by guard relays to reduce Tor network bottle-

necks and improve responsiveness. We explored static throttling configurations while

designing, implementing, and evaluating three new throttling algorithms that adap-

tively select which connections get throttled and dynamically adjust the throttle rate

of each connection. Our adaptive throttling techniques use only local relay informa-

tion and are considerably more effective than static throttling since they do not require

re-evaluation of throttling parameters as network load changes. We found that client

throttling is effective at both improving performance for interactive clients and increas-

ing Tor’s network resilience. We also analyzed the effects throttling has on anonymity
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and discussed the security of our algorithms against realistic adversarial attacks. We

found that throttling improves anonymity: a guard’s bandwidth leaks more information

about its circuits when throttling is disabled.
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7.1 Introduction

Recall that the aggregate bandwidth costs of sending communication securely through

multiple Tor relays are significantly higher than direct communication: the amount of

bandwidth expended by a client is also expended by each relay in its circuit. A signifi-

cant characteristic of communication over Tor is that most clients use Tor for interactive

applications like web browsing, but most data is transferred for non-interactive appli-

cations like file sharing [28]. Moreover, Tor relays forward traffic for multiple circuits

simultaneously, further increasing bandwidth obligations. The combination results in

overloaded relays and drastically increased latency for communication over Tor [28].

A lack of incentives to run relays combined with the associated costs has hindered re-

lay enlistment, and in turn, Tor’s scalability. Although relaying traffic can increase user

anonymity by frustrating attempts to differentiate relay-sourced from relay-forwarded

data, there are no measurable benefits to providing service for others. Consequently,

clients greatly outnumber relays in Tor. In 2009, there were an estimated 100,000 simul-

taneously active Tor clients [27] but only about 1,500 Tor relays.1 This uneven distri-

bution of bandwidth responsibilities combined with the disproportionately high client-

to-relay ratio results in poor system performance and a tragedy of the commons [95]

scenario: as Tor grows, it will require additional relays to provide bandwidth and traffic

forwarding services to remain usable.

7.1.1 Recruiting New Relays

A significant problem faced by the current Tor system is how to recruit new relays to

support expansion and ease the load suffered by current relays. There have been few

approaches to solve the relay recruiting problem. One approach is to simply require

every client to also be a relay, effectively reducing the client-to-relay ratio to 1:1 [107].

While we wish to promote relaying traffic, we do not wish to forcefully impose it: clients

who are unable to run a relay due to censorship [108] would not be able to effectively

use the system. Further, clients with poor Internet connectivity or a slow connection

may be practically unable to provide service and may even harm network performance

for others. Denying anonymity to these clients not only opposes the “anonymity for

1The corresponding client-to-relay ratio at the time this research was conducted (2009) was 66:1.
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all” ideology, but also decreases anonymity for others since it reduces the diversity and

size of the anonymity set [45] of potential circuit initiators. Tor’s approach thus far has

been to build a community and educate users about the benefits of anonymity, while

simplifying relay setup and maintenance procedures. While this approach has been

effective at expanding the network to its current size, relays are still in high demand

and performance remains poor.

7.1.2 Introducing BRAIDS

In this chapter we present BRAIDS,2 a set of practical mechanisms for the Tor anonymity

network. BRAIDS increases incentives for relays while limiting the delays caused by

non-interactive BitTorrent clients and keeping the system usable for everyone. Relays

using BRAIDS enjoy lower latency and higher throughput than other users. In particu-

lar, BRAIDS allows relays to achieve 75% lower latency than non-relays for interactive

web traffic – a 40% improvement over the current Tor network. Relays initiating non-

interactive traffic receive a 90% increase in total bandwidth utilization from non-relays.

To improve performance, BRAIDS incorporates differentiated services and a sched-

uler based on the proportional differentiation model introduced by Dovrolis et al. [34,

109, 110, 87]. BRAIDS aggregates traffic into three hierarchical service classes pro-

portionally prioritized as low-latency > high-throughput > normal, where the “cost”

of high-throughput > low-latency (normal service is free). Each relay rate-limits the

low-latency class to prevent high-throughput nodes from overwhelming low-latency traf-

fic. Finally, traffic is paid and proportionally prioritized in both directions through the

circuit, capturing Tor’s asymmetric bandwidth requirements.

BRAIDS users optionally and anonymously “pay” relays with generic tickets that

are both distributed freely in small amounts to all clients and relays, and collected by

each relay while volunteering bandwidth to Tor. We use relay-specific tickets [111, 112]

– random numbers combined with relay-identifiers – that are signed by an authority.

Signed tickets are verified at the relay, defeating the double spending problem in which

clients must make immediate deposits to catch cheaters that duplicate and spend a ticket

multiple times. Information leakage is avoided since relays can verify tickets without

assistance from an external entity. Tickets are valid during uniform intervals to prevent

2BRAIDS stands for “Bandwidth Reciprocity And Incentivized Differentiated Services.”



112

linking clients with tickets. Clients who cannot or choose not to pay receive slightly

reduced performance.

Other incentive-based recruitment approaches exist in the literature: the gold star

scheme [47] gives preferential treatment to fast relays whereas PAR [113] and XPay [114]

use e-cash and an online bank to produce monetary incentives. A variety of attacks [17,

19, 115, 20] make it difficult to design a secure solution with minimal loss of anonymity.

In particular, bandwidth accounting mechanisms that give better service to relays that

volunteer more bandwidth [47] in some cases significantly decrease the anonymity set

of relays receiving better service, and in others [113] unintentionally allow an adversary

to link relays to the same circuit.

BRAIDS is secure, retaining all of Tor’s anonymity for users browsing the web,

whereas the previously proposed gold star scheme [47] achieves less than 65%. Our

anonymous ticket approach mitigates the intersection attack that has plagued previous

schemes. Further, BRAIDS bounds cheating in such a way that users running relays

must volunteer a significant amount of bandwidth before maliciously gaining a relatively

insignificant number of tickets.

7.1.3 Outline

The remainder of the chapter is outlined as follows. In Section 7.2, we briefly discuss

BRAIDS system requirements while detailing the design in Section 7.3. Analysis of se-

curity and parameters is given in Section 7.4, while simulations and results are described

in Section 7.5. Finally, Section 7.6 concludes.

7.2 Requirements

BRAIDS’ main goal is to encourage Tor clients to run relays by providing incentives

in the form of increased performance. This system should prioritize low-latency traffic

over high-throughput traffic to reduce the negative impact that file sharing users have

on overall system performance while remaining usable by everyone. The service received

by web browsing clients should not reduce their anonymity.

BRAIDS shares the same threat model as Tor – a local adversary who cannot ob-

serve or interfere with traffic sent between honest nodes. While we do not defend against
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current attacks on Tor, our system should not reduce Tor’s security by introducing any

new vulnerabilities. We should not leak information about the circuit initiator or the

identities of relays composing the circuit.

In addition to the aforementioned entities, we introduce a centralized, partially-

trusted, offline bank to manage and certify bandwidth accounting tasks. The bank

should only be trusted to follow protocol, but we assume it can otherwise attack the

system using any information in its possession. BRAIDS should provide accounting

mechanisms for both the outgoing path from client to server, and the reverse path from

server to client (previous systems [113, 114] do not provide payment mechanisms for the

reverse path of a two-way communication channel), since many existing applications

(e.g. web browsing and streaming media) have significantly higher downstream than

upstream client requirements. Bandwidth accounting should be anonymous to protect

the client’s identity, while payments must be unforgeable, non-reusable, and should not

be linkable to the client [116, 117]. Additionally, we require double spending prevention

in the form of immediate double spending detection. Clients attempting to double-

spend should not receive service. Any attempts to cheat the system should be bounded

so that the overall efforts required to cheat will outweigh the achievable benefits.

Finally, our system should be an incrementally deployable extension to Tor: users

transitioning from legacy software should not be partitioned from the network.

7.3 System Design

BRAIDS motivates users to operate Tor relays by introducing generic tickets for service

accounting. Using blind signatures, users remain anonymous while obtaining a limited

amount of free tickets from the bank. Tickets are then embedded into Tor cells to request

the desired class of service – either low-latency and low-throughput (e.g. general web

browsing) or high-latency and high-throughput (e.g. downloading or sharing large files).

Each relay verifies its tickets to prevent double spending.

7.3.1 Relay-specific Tickets

Our ticket design draws upon ideas from coin ripping [111] and fair exchange for mix-

nets [112]. Since tickets are relay-specific, our construction requires that clients have a
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priori knowledge about their desired communication partners [118]. Tor already requires

knowledge of relays when building circuits, so relay-specific tickets are a natural choice.

Ticket Structure

A ticket T consists of a main part Ts, called the ticket stub, and a receipt part Tr, called

the ticket receipt. The ticket stub contains the identity of the relay R (its public key) to

which the ticket may be transferred. Letting | denote concatenation, we define a ticket

for R as:

TR = {TRs | TRr } = {R | H(TRr ) | d | σ | TRr } (7.1)

where H is a cryptographically secure one-way hash function, d is a set of date-stamps,

σ is the bank’s partially blind signature on {R | H(TRr ) | d}, and TRr is a random

bit-string used as a receipt.

Ticket Activation

We use a blind signature scheme [119] to activate tickets and ensure no information

about relay R chosen by client C is revealed. Specifically, our construction uses a

partially blind signature [120] where the client blinds information about the chosen relay

R. The bank attaches uniform public date-stamps (described below) to the ticket, but

cannot discover the blinded relay information. The bank’s signature creates a strongly

unforgeable ticket TR, i.e. modifying the signed contents invalidates the ticket.

Ticket Validity Intervals

The bank attaches a set of date-stamps d = {du | dv | dw} to the blinded relay informa-

tion before signing. The time from ticket generation until the first date-stamp specifies

the spending interval [-,du) in which relay-bound tickets may be spent. The time be-

tween the first and second date-stamp specifies the relay-exchange interval [du,dv) in

which a relay may exchange tickets at the bank for new relay-bound tickets. The time

between the second and last date-stamp specifies the client-exchange interval [dv,dw) in

which any client or relay may exchange tickets at the bank for new relay-bound tickets.

Finally, tickets expire and are completely void after the final date-stamp. We suggest

values for these parameters in Section 7.4.1.
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The relay-before-client exchange priority prevents a client from maliciously exchang-

ing a spent ticket before the relay can (causing the relay’s ticket to appear double-spent

upon attempted exchange) while still allowing the client to exchange unspent tickets.

The final date-stamp prevents the bank’s ticket database from growing infinitely large.

The bank’s global date-stamps are used for every ticket signed during a given time

period to prevent the bank from marking tickets and linking clients with relays.

7.3.2 Ticket Transferability

Users may wish to transfer tickets to other users, or update tickets that have passed

their spending interval but are not yet void. Unspent tickets may be transferred to

relays for payment, but spent tickets or those past their spending interval must be first

exchanged at the bank.

Users remain anonymous by exchanging tickets with the bank through Tor. However,

in order to exchange during the relay-exchange interval, a relay is required to prove

knowledge of its private key to the bank. Although this means relays are not anonymous

in the exchange, we note that the bank can already enumerate the list of relays by

downloading the public directory. The bank validates that the relay is bound to the

exchanged tickets.

Relay Ticket Exchange

When relay C receives ticket T C , it becomes a voucher for C redeemable for a new

relay-specific ticket. Relay C and bank B use Algorithm 6, Relay-Ticket-Exchange, to

generate a new ticket spendable at relay R given that C presents a valid ticket voucher

T C and new ticket material. C performs setup on lines 1–2 by generating a random value

and its hash. C sends B the voucher T C , and B is responsible for validating T C . B does

this by verifying T C is within the allowable date interval for relay-exchange, the identity

C from T C matches the real identity C, C | H(T Cr ) never appeared before (i.e. T C was not

double spent), σ is a valid signature on C | H(T Cr ), and that a freshly computed H(T Cr )

matches the hash from T C . If the voucher validates, B and C cooperate to produce a

partially blind signature on the new ticket TR payable to relay R.
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Algorithm 6: Relay-Ticket-Exchange: T C for TR between relay C and bank
B for service at relay R. The arrows represent anonymous communication in
Tor. The partially blind signature (pbs-sign(·)) and verification (pbs-verify(·))
are defined in [120].

Require:
1: C: generate random receipt TRr
2: C: construct partial stub TRs = {R | H(TRr )}

Ensure:
3: C → B: redeemable voucher T C

4: B: validate voucher pbs-verify(T C)
5: B: global ticket validity date-stamps d = {du | dv | dw}
6: B ↔ C: partially blind-signature σ = pbs-sign(blind(TRs ) | d)
7: C: construct full stub TRs = {TRs | d | σ}
8: C: construct ticket TR = {TRs | TRr }

Client Ticket Exchange

Since a client might obtain tickets for a relay who is offline for the duration of the

ticket’s spending interval, a client may exchange a ticket for another bound to a new

relay. The Client-Ticket-Exchange protocol (not shown) is essentially identical to

Algorithm 6, except that on line 4 the bank checks that the ticket is in the correct

interval for client-exchange, but does not (and cannot) check for the identity of the

client in the ticket.

Incorporating Tickets into the Tor Protocol

Our ticket construction from Section 7.3.1 enables us to easily embed ticket stubs and

receipts in Tor messages (i.e. cells). As shown in Algorithm 7, BRAIDS-Communication,

the client constructs the Tor message such that each relay on the path receives its own

ticket stub and the receipt for the previous-hop in the path. There are two exceptions:

the first-hop relay does not send a receipt to the client, and the last-hop relay receives

a complete ticket (there is no next-hop relay).

We must include accounting mechanisms not only for the forward path from client

to server, but also the reverse path from server to client due to asymmetric bandwidth

requirements (e.g. streaming media). Since the reverse path cannot be paid by the

server, clients pre-pay circuits (several cells can be transferred for each ticket) and relays
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Algorithm 7: BRAIDS-Communication: Message M from Client C to server S
through relays R1, R2, R3.

Require:
1: C obtains tickets TRi = {TRi

s | TRi
r }, for i ∈ [1, 3]

2: MC→R3 = EKCR3
{TR2

r | TR3
s | TR3

r | S |MC→S}
3: MC→R2 = EKCR2

{TR1
r | TR2

s | R3 |MC→R3}
4: MC→R1 = EKCR1

{TR1
s | R2 |MC→R2}

Ensure:
5: C → R1 : MC→R1

6: R1 : verify TR1
s

7: R1 → R2 : EKR1R2
{MC→R2}

8: R2 : verify TR2
s

9: R2 → R1 : EKR1R2
{TR1

r }
10: R2 → R3 : EKR2R3

{MC→R3}
11: R3 : verify TR3

s

12: R3 → R2 : EKR2R3
{TR2

r }
13: R3 → S : MC→S

notify clients when their paid balance expires. Clients embed tickets in outgoing cells

using Algorithm 7, which distributes tickets to each relay in the circuit. A relay lowers a

circuit’s priority when not paid and restores it after new tickets arrive. Since scheduling

decisions are made locally and independently, clients may choose to pay a subset of

relays in the circuit without affecting scheduling decisions made by other relays.

Relays drop circuits upon detection of malicious activity, including forged tickets,

and will only forward messages if a receipt is returned by the next-hop relay. Each relay

is encouraged to participate faithfully to continue accumulating tickets since malicious

activity stops the flow of tickets for all relays in a dropped circuit.

Double Spending

We have shown that relay-specific payments eliminates the trade-off between double

spending prevention [121] and information leakage, suffered by PAR [113], since tickets

can be verified by the relay without a third party. Anonymous payments are appropriate

in Tor since they protect the identity and privacy of the user.



118

7.3.3 Randomized Ticket Distribution

A major problem with the gold star incentive scheme [47] is that gold star relays can

be distinguished from normal relays, since their gold star status appears in the public

directory. This reduces their anonymity set – an adversary can be confident that if a

client is receiving gold star service, that client also runs a relay.

To mitigate this problem, we assign each client ticket distribution agents – guard

nodes that assist in distributing free tickets to all clients. We note that each Tor client

already uses a small set of guard nodes from which a circuit entry node is selected

to limit client identity (IP address) exposure to malicious entry nodes. Each agent

distributes tickets from the bank to clients in proportion to the bandwidth it provides

as a relay: the client will create a secure connection tunneled through an agent to invoke

the ticket distribution protocol (similar to Relay-Ticket-Exchange – Algorithm 6).

Agents frustrate a Sybil attack [122], where clients join multiple nodes to the system to

increase free ticket income, by limiting tickets distributed to each client’s IP address.

Distribution Requirements

We require several properties as agents distribute tickets: nearly all clients should ob-

tain tickets to remain indistinguishable from relays when spending; the algorithm that

assigns clients to agents should not leak the client’s identity to prevent an adversary

from using a predecessor attack to infer a client from its agents; a client should obtain

more tokens by becoming a relay than by cheating to maintain relay incentives; and a

client’s set of agents should be consistent over roughly the same period as they would

if used as regular guards for stability.

Agent Assignment

Each client uses Algorithm 8 to determine which guard nodes it can use as distribution

agents. A fundamental part of the protocol is the hash–bandwidth test for a guard G.

The test is true if the result of a cryptographic hash is less than the fraction of total

guard bandwidth provided by G ([43] describes secure bandwidth measurements).

A client uses hash–bandwidth tests to walk through the guards while constructing

a set of signature chains such that each chain can be verified as a correct chain for the
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Algorithm 8: Agent-Assign: Clients verifiably compute their assigned ticket
distribution agents by creating signature chains.

1: sig chains = [((clientIP, 0))]
2: for i = 1→ walk length do
3: next step = [ ]
4: for chain ∈ sig chains do
5: link = last(chain)
6: for G ∈ guards do
7: if hash(link | G.pub key)<bandwidth frac(G) then
8: sig = get sig(G, clientIP, i)
9: next step.append(chain+ G.pub key + sig)

10: end if
11: end for
12: end for
13: sig chains = next step
14: if sig chains = [ ] then
15: abort() // found no valid chains of proper length

16: end if
17: end for

client. After completing Algorithm 8, each constructed chain is then used as input to a

final round of hash–bandwidth tests (one for each guard): every guard that passes this

final test is assigned as a distribution agent for the client.

A client builds signature chains as follows. On line 1, a client initializes a signature

chain with its IP address and 0 as the current step in the walk. The client then initiates

a pseudo-random walk: any guard G that passes the hash–bandwidth test is a valid

next step, using the previous link in the chain and G’s public key as input to the hash

function (line 7). If G passes the test, it will return a signature to extend the chain and

the walk (line 8-9). Although not shown on line 8, the client also sends the previous

signature in the chain to prove to the guard that the signature request is valid (and not

a waste of resources). Note that each step of a walk may break or fork a signature chain,

hence the number of parallel walks performed, depending on the number of guards that

pass the hash–bandwidth test. A client will continue extending its signature chains until

it has walked walk length steps, or has no next steps for any walk.

If Algorithm 8 does not terminate via abort(), then each chain in the list of sig chains
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is a verifiable (but not public) token that attests the correctness of the assignment with-

out leaking the client’s IP address. The client uses each constructed chain to find an

agent: a guard A that passes another hash–bandwidth test using the chain and A’s

public key as input to the hash function.

If Algorithm 8 terminates via abort(), then the client does not have any valid agents.

However, to control the expected and median number of agents per client, we may add

an adjustable parameter λ to the bandwidth fraction of each guard node. Probabilistic

bounds show that the probability of having k agents will decrease exponentially in k,

making it infeasible for an adversary to gain a large advantage by, e.g. manipulating

the public keys of some agents.

Algorithm 8 requires that clients compute hashes for every guard, but is advanta-

geous since it does not require re-assignment when agents churn and it load-balances dis-

tribution tasks among agents. Although Tor directory servers measure bandwidth [123],

we require a secure bandwidth measurement technique such as [43]: the bandwidth

values listed in the consensus become a security parameter since they determine the

outcome of the hash–bandwidth tests, the number of agents assigned to a client, and

therefore the total number of free tickets a client may receive.

Longer walks increase security since an adversary must compromise walk length

nodes to manipulate a signature chain. We suggest using walk length = 3 so that

an adversary has a higher probability of compromising a circuit than compromising a

walk: in the random oracle model, and assuming a deterministic signature scheme (like

RSA+FDH), predicting (better than random guessing) whether a given guard is a valid

agent for a client reduces to producing valid signatures for all walk length signatures

in the chain. With a walk length of 3, an adversary would not only need to control

the final relay in the chain, but also either the first or second relay to obtain all three

signatures. The fraction of nodes’ agents that can be guessed in this way is on the same

order of magnitude as the fraction of circuits that can be compromised by end-to-end

attacks. We simulated agent assignment and found that using walk length = 3 and

λ = 0 results in a median of one agent per node (details omitted for space reasons).

Note that clients may use unassigned guards, but guards will not allow unauthorized

clients form collect free tickets from them.

Since agents limit distribution to unique IP addresses, users behind NAT boxes will
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compete for handouts and aggregate performance for NAT users will suffer. Note that

if IPv6 is universally adopted, the distribution scheme will require modification since

each client can generate several IPv6 addresses [124]. We accept an adversary capable

of joining multiple IPv4 nodes since it increases Tor’s anonymity set.

Agent Collusion

Using guards as distribution agents introduces a chance for collusion. An adversary

could join a relay to Tor, become a guard, and distribute tickets to a colluding client.

To mitigate this problem, the bank will only allow an agent to distribute tickets if that

agent has e.g. obtained the “stable” flag in Tor [125]. An agent cannot cheat until it

has contributed significant resources.

The bank also limits distribution to each agent. Bandwidth measurements may

be used to estimate the number of clients an agent is servicing, and the number of

tickets the agent is allowed to distribute. Since agents are also guard nodes and ticket

distribution is based on contributed bandwidth, the number of tickets they distribute

directly correlates with the number of tickets they earn by relaying traffic. This can be

used to bound the advantage agents gain by not honestly distributing tickets to clients.

Suppose agent A has bandwidth fraction b. Each agent has two non-agent guard

nodes, and A receives 1
3 of the tickets they spend when they select A as their entry node

to Tor. Each selection occurs with probability b, so A receives 2·b
3 of the tickets just by

being a guard. If A additionally keeps the tickets A is supposed to distribute, the most

tickets A can receive is 5·b
3 , about 2.5 times as many tickets. This is the worst-case:

tickets re-spent by relays will lower this bound. Future work should consider auditing

agents’ ticket distribution to detect dishonesty.

Ticket Economy

Our ticket distribution strategy continuously introduces new tickets into the system

that will eventually be exchanged at the bank. Continuous ticket exchanges impose a

bandwidth constraint on the bank (see Section 7.4.1). Therefore, we must bound the

total number of tickets that exist in the system at any one time in order to allow the

bank to handle all exchanges that may occur during an exchange interval.
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To bound the total number of tickets in the system, the bank imposes a ticket tax on

users when exchanging tickets. The tax rate is adjustable based on the bank’s bandwidth

constraints and estimate of the total number of tickets currently in the system. The

bank’s estimate considers the number of tickets exchanged during previous exchange

intervals (tickets not exchanged expire automatically). In practice, the bank can prob-

abilistically fail each ticket exchange to reach the desired tax rate, but this consumes

bandwidth resources for tickets that will be taxed. Alternatively, the bank could reveal

random numbers that represent a hash output range during every exchange period, and

tickets whose hash value falls in this range can be considered taxed and invalid. Then

clients can discover which of their tickets have been taxed without contacting the bank.

The anonymity implications involved with taxing and bounding tickets are discussed in

detail below in Section 7.4.2.

7.3.4 Differentiated Service

BRAIDS employs differentiated services3 and a scheduler based on the proportional dif-

ferentiation model introduced by Dovrolis et al. [34, 109, 110, 87]. The model states that

performance for each service class (in terms of measurable metrics like queuing delay)

should be relatively proportional to parameters configured by the network operator. Let

qi(t, t+ τ) be a performance metric measured during the interval (t, t+ τ) for monitor-

ing time scale τ . The proportional differentiation model creates quality differentiation

parameters ci for each class of service i and introduces constraints such that:

qi(t, t+ τ)

qj(t, t+ τ)
=
ci
cj

(7.2)

where c1 < c2 < . . . < cn. We write the delay ratio between these classes as c1 : c2 : . . . :

cn. The performance metric under consideration should always maintain the proportions

defined by the quality differentiation parameters, during any monitoring timescale.

We define the performance metric qi to be the queuing delay of class i; the delay

parameters between each class are adjustable. Dovrolis et al. contribute schedulers that

approximate proportional delay differentiation under heavy loads. BRAIDS utilizes the

Hybrid Proportional Delay (HPD) scheduler, which is a combination of the Waiting

3We also explored proportional delay differentiation, as is used in BRAIDS, in Chapter 5 (Section 5.3)
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Time Priority (WTP) and the Proportional Average Delay (PAD) schedulers. Each

Tor cell is time-stamped upon arrival at the relay and placed in the queue associated

with the cell’s class of service. When the relay makes a scheduling decision at time

t, WTP computes the priority of only the cells at the head of each class i’s queue as

p′i(t) = wi(t)
ci

, where wi(t) is the waiting time of the cell computed using the time-stamp

from above. PAD computes class priorities as p′′i (t) = ai(t)
ci

, where ai(t) is the total

average delay incurred by service class i before time t. HPD weights these priorities as

pi(t) = p′i(t) · (1− f) + p′′i (t) · f , where f is an adjustable fraction. The cell with the

highest computed priority pi(t) is scheduled. In BRAIDS, the HPD scheduler computes

at most six priorities for each scheduling decision.

HPD allows us to differentiate performance of paying and non-paying clients by

adjusting the ci parameters. We then divide client traffic into three distinct service

classes: (1) Low-latency for web browsing clients, (2) High-throughput for file sharing

clients, and (3) Normal for non-paying clients. These classes will be proportionately

delayed as low-latency : high-throughput : normal.

Low-latency Service

Users who wish to browse the web typically want fast response but not high through-

put. Therefore, we schedule low-latency traffic with the highest priority. We rate-limit

low-latency traffic for each circuit to prevent users from sending high traffic loads and

overwhelming the low-latency class; traffic exceeding a threshold limit over a monitor-

ing timescale will be demoted to the normal class. We suggest a threshold equal to

the number of free tickets each user receives during a spending interval (discussed in

Section 7.4.1). Throttling is necessary to prevent high-throughput clients from “abusing

the pipe” for web users, which is currently a well-known problem in Tor [28].

High-throughput Service

Conversely, clients with high throughput requirements (e.g. BitTorrent users) tolerate

higher-latency service. Therefore, we increase scheduling delays relative to the low-

latency class but do not throttle traffic. As a result, high-throughput traffic has a

diminishing effect on low-latency traffic.
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Normal Service

Since not all users will be able or willing to deploy relay services, we do not require

clients to make payments in order to use BRAIDS. Instead, clients who have expended

their free ticket allowance, or choose not to pay for service, receive both the lowest

priority and, in turn, the highest scheduling delays.

Differentiating service results in two interesting consequences: it provides incentives

to run relays, since users in higher service classes receive lower delay; and it allows for

incremental deployability by placing traffic from legacy clients in the normal service

class. Note that the extent of the performance gain between service classes depends on

the chosen delay parameters.

7.4 Analysis and Discussion

7.4.1 Parameter Selection

Ticket Validity Intervals

Recall that ticket validity intervals [-,du), [du,dv), and [dv,dw) are global uniform inter-

vals in which tickets may be spent and exchanged and are broadcasted by the bank (see

Section 7.3.1). We now explore the frequency and relative timing of each interval.

To prevent unspendable ticket periods, tickets that are received in spending interval

i are exchanged in spending interval i+ 1 (exchange interval i overlaps spending inter-

val i + 1). Time in each exchange interval is shared between a relay-exchange period

and a client-exchange period such that the fraction of time allotted for relay exchange

corresponds with the expected fraction of tickets relays possess (which the bank can

estimate based on exchanges in previous intervals).

Using the interval strategy just described, the bank will only exchange half of all

tickets in the system during every spending interval and users can only spend half of

their tickets at one time. Following this approach, tickets received in spending interval

i are exchanged in spending interval i + 1 and spent in spending interval i + 2. All

tickets not exchanged during an exchange interval will expire, so if relays are offline for

the duration of an exchange interval, they will lose roughly half of their tickets.

Longer spending and exchange intervals means relays must wait longer to use tickets,
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but shorter intervals means tickets expire faster. We suggest a compromise of 24 hour

spending and exchange intervals, noting that future work should consider a further

exploration of exchange intervals.

Ticket Worth

Recall that several cells may be transferred through Tor for each ticket. The number

of cells transferred for each ticket has an important impact on the bank’s CPU and

bandwidth consumption. Since we limit the amount of data users can download for

free, higher ticket worth means the bank has to exchange fewer tickets, reducing both

CPU and bandwidth requirements. However, users then have fewer tickets overall which

reduces the number of independent circuits that can be paid simultaneously. We suggest

that users receive 3 tickets every 10 minutes so they may utilize a prioritized circuit at

any time. We note that in practice these tickets will likely be freely distributed in

batches at a higher time granularity (e.g. every hour).

Cryptographic and Bandwidth Costs

Each relay must perform a SHA1 hash and an AES encryption/decryption for each

cell it transfers. BRAIDS introduces an additional task – verification of a ticket. We

implemented the partially blind signature scheme of Abe et al. [120] using GMP [126]

for arbitrary precision arithmetic. We measure both the amount of time a bank spends

producing a signature, and the amount of time a relay spends verifying a single ticket.

We also compute the time to perform the SHA1 and AES operations required by Tor.

Table 7.1 shows the results of our Linux benchmarks on 3 GHz AMD 64 Athlon

X2 6000 and 2.67 GHz Intel Core 2 Duo 6750 CPUs. We report the mean, median,

and standard deviation of times, in microseconds, for each operation described above.

As expected, a signature verification takes significantly longer than AES and SHA1

operations currently performed by relays. However, the value of each ticket can be

selected such that a ticket need not be sent for every cell and expensive ticket verification

costs can be amortized. An appropriate value would result in a greater cost for AES and

SHA1 than for verifications to prevent the signature scheme from becoming a bottleneck.

Our benchmarks suggest a single ticket be worth 128 KB of data so that a verification

need only be performed for every 256 cells.
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Table 7.1: Cryptographic time per cell for Tor relays compared with BRAIDS PBS
verifications, in microseconds. Also shown is the bank’s time per signature.

Mean Median Std. D.

AMD Athlon
AES+SHA1 9.139 8.616 2.493

(3 GHz)
PBS verify 531.287 530.885 8.342
PBS bank 413.244 412.069 7.297

Intel Core2
AES+SHA1 6.226 5.859 1.307

(2.67 GHz)
PBS verify 1496.813 1496.613 10.844
PBS bank 1193.233 1192.782 9.472

Given our Intel benchmarks, a relay performs roughly 666 verifications per second

while the bank may perform over 833 signatures per second per processor core. Each

relay may therefore upload at a rate of 666 Mb/s while streamlining verification proce-

dures, and the bank may sustain an aggregate 833 Mb/s of prioritized traffic through

Tor. Recall that the bank is offline and may be distributed among multiple physical

machines for additional computational processing resources.

To compute bandwidth costs, suppose a user receives η free tickets during each

spending interval. Not including protocol overhead, which can be minimized by batching

ticket exchanges, each ticket exchange consumes 488 bytes of bandwidth (the partially

blind signature from Abe et al. [120] requires multiple messages between the client

and the bank). In aggregate, the bank distributes η · µ tickets per day, where µ is the

total number of users receiving free tickets. Ticket exchanges are taxed such that after

ρ spending intervals, η · µ tickets are eliminated from the economy. The total number

of tickets in the system is η · µ · ρ in expectation.

Since the spending and exchange intervals overlap, the bank will exchange and pro-

duce signatures for η·µ·ρ
2 tickets every spending interval. If we assume a spending interval

is 24 hours following our interval strategy from above, η = 432, µ = 100,000, and ρ = 20,

then the bank must sustain bandwidth loads of 20 Mb/s and perform 5,000 signatures

per second, within reason of a multi-core CPU with a cryptographic accelerator.
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7.4.2 Security Analysis

To measure the impact of BRAIDS on sender anonymity, we analyze information leakage

in terms of an anonymity probability distribution [127, 128]. This analysis technique

uses information-theoretic entropy [129] as a measure of information contained in a

probability distribution. We define a discrete random variable I as a circuit initiator

and compute a distribution of all potential initiators as a probability mass function

Pr(I = i) = pi where pi is the probability that a user i is the circuit initiator given the

observations on the system. The entropy H of our distribution is:

entropy = H(I) = −
N∑
i=1

pi log2(pi) (7.3)

where pi is the probability for user i taken from the distribution and N is the size of

the anonymity set (the set of potential circuit initiators). The maximum entropy in the

system HM is computed as HM = log2(N). The degree of anonymity [127] quantifies

information leakage and can then be defined as the fraction of total entropy obtained

from the given distribution I:

degree of anonymity =
H(I)

HM
(7.4)

Distinguishability

To determine the effects of distinguishing clients from relays, we first assume that clients

will fill one of two roles: a liberal client who spends tickets immediately by downloading

web pages, and a conservative client who stores tickets until they can download a large

file. Our liberal-conservative client model captures potential BRAIDS spending habits

– in practice some clients will consistently spend most of their tickets while others will

consistently underspend. We further assume that each relay in the system always has

the desired number of tickets for any circuit it initiates to simplify analysis. We note

that this is a coarse model as it is difficult to estimate users’ spending habits.

While the tax rate ρ allows the bank to remove tickets from the system to keep ticket

exchanges within manageable bandwidth bounds, it also potentially reduces anonymity

for large downloads. If a user spends more tickets than is possible to collect only from
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(a) Circuit Throughput Effect on Anonymity (b) Conservative Clients’ Effect on Anonymity

Figure 7.1: Anonymity is highest when the adversary observes fewer than θ = η tickets
per circuit and lowest when more than θ = η·ρ are observed. (a) In the shaded area, only
1
10 of clients are conservative, collecting tickets longer than one spending interval. (b)
Anonymity increases with conservative clients that contribute to adversarial uncertainty.

free distribution (η ·ρ), an adversary can determine with high confidence that the circuit

initiated from a relay by observing θ > η ·ρ tickets spent in a circuit. An adversary may

additionally determine which relays can afford a given circuit by performing bandwidth

measurements, since a relay’s ticket income corresponds with the bandwidth it provides.

However, in Section 7.4.1 we have suggested distributing enough free tickets to pay for

general web browsing so that the majority of users will not spend over η · ρ tickets.

Discussion

To analyze our system, we obtain the growth rate of Tor relays from [125]. We estimate

the client growth rate by analyzing how the number of client connections to a relay

changes over a two month experiment [130]. We apply these rates and the estimated

network size of 100,000 clients and 1,500 relays to find the total network size over time.

From Section 7.4.1, each ticket is worth 128 KB of data transfer and we distribute

η = 432 tickets per day. Tickets are taxed such that the system’s ticket capacity is

ρ = 20 cumulative days of tickets. The fraction of conservative clients is 1
10 , except

where noted.

Figure 7.1 shows how the circuit throughput and fraction of conservative clients

may affect the set of potential initiators (if an adversary can guess this fraction) and
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therefore the degree of anonymity BRAIDS provides. By observing θ < η tickets in a

circuit, an adversary is unable to infer information about the circuit initiator since all

liberal and conservative clients obtain η tickets during a spending interval. Observing

θ > η · ρ tickets means the circuit must have been initiated from a relay. For other

observations, the degree of anonymity depends on the number of clients the adversary

can eliminate from the potential initiator set.

The shaded area in Figure 7.1(a) represents anonymity when 1
10 of clients are con-

servative. This fraction is an estimate: it is difficult to determine how users will spend

in practice. We explore the effects of varying the conservative client fraction in Fig-

ure 7.1(b). Since conservative clients represent adversarial uncertainty, we find that hav-

ing more conservative clients has a positive effect on anonymity. In all cases, anonymity

is higher in BRAIDS than the gold star scheme where only the fastest 7
8 of relays are

potential prioritized-traffic initiators. For highest anonymity, clients should spend less

than η tickets for prioritized traffic in each spending interval.

7.5 Simulation and Results

We simulate BRAIDS and Tor to compare performance and illustrate how effective

our system is at encouraging users to run relays. Below we describe our simulator,

experiments, and results.

7.5.1 Simulator

We built a discrete-event-based simulator that models the Tor network. Within the first

ten minutes of an experiment, all Tor clients start one of the applications described below

and begin generating data. Each client builds circuits following Tor’s path selection

protocol [131], and refreshes each circuit after ten minutes, building a new one when

the next request is made. We now describe our client applications.

Web Clients

Each web client (WC) generates traffic by making a top-level page request and waiting

for a response from the server. After receiving a response, the WC makes several

additional parallel requests for objects embedded in the page (e.g. images). After
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receiving all embedded object responses, the WC waits for a period of time before

downloading another page. We record the time required to download the entire page,

including all embedded objects. The period between the initiation of the top level

request until the reception of the final embedded object simulates the time required to

render an entire page in a user’s browser. Distributions for all request and response

sizes, the number of embedded objects per page, and the time between page requests

are taken from the web traffic study conducted by Hernandez-Campos et al. [58].

File Sharing Clients

Each file sharing client (FSC) simulates a BitTorrent-like protocol by continuously gen-

erating data to five random peers through the Tor network. Every thirty seconds the

FSC will replace its slowest connection with a new peer and a new circuit, simulat-

ing BitTorrent’s “optimistic unchoke” algorithm [132]. Each FSC exchanges blocks by

sending a 32 KB request for a 32 KB reply and immediately sending another request

upon receiving a reply. We measure the time to exchange each block.

File Sharing Relays

A file sharing relay (FSR) implements the same algorithm as a FSC with the following

deviation: FSRs contribute a fraction of their total upstream bandwidth to Tor while

using the remaining bandwidth for their own file transfers. The bandwidth contributed

by FSRs supplies them with additional income not received by FSCs.

We simulate every cell generated by each client and sent through the Tor net-

work. Tor nodes schedule outgoing cells using an exponential weighted moving average

(EWMA) scheduler [33], while BRAIDS nodes use the HPD scheduler (see Section 7.3.4).

To bootstrap the economy, tickets are distributed to all clients and all relays at the be-

ginning of each simulation.

7.5.2 Experimental Parameters

Our simulated network consists of 19,400 web clients, 300 Tor relays, 2,000 servers, and

600 file sharing nodes. Our web and file sharing nodes are given consumer-class connec-

tions of 12 Mb/s downstream 1.3 Mb/s upstream bandwidth, and 24 Mb/s downstream
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(a) Prioritized Web Clients (b) Normal Web Clients

(c) File Sharing Relays (d) File Sharing Clients

Figure 7.2: BRAIDS and Tor simulated performance with a varying percentage of File
Sharing Clients converting to File Sharing Relays. Webpage download time for (a)
paid, low-latency service, and (b) unpaid, normal service. Bandwidth utilization for (c)
file-sharing relays, and (d) file-sharing clients.
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3.5 Mb/s upstream bandwidth, respectively.4 File sharing relays draw contributed band-

width amounts from the Tor network consensus [133] repeatedly until obtaining a value

below their upstream capacity.5 Altruistic relays are given symmetric upstream and

downstream capacities drawn from the bandwidth distribution reported in the con-

sensus, clipped at 20 MB following standard Tor procedure [131]. Servers are given

unlimited bandwidth and we impose no processing delay on any node. Network latency

between every hop is set to 100 ms, and we do not account for membership churn or

congestion control in our simulator since it will have a similar effect on both Tor and

BRAIDS performance. Our simulation runs for 60 virtual minutes.

We run multiple BRAIDS and Tor experiments with the above parameters, using

1 : 64 : 4096 as the HPD scheduler’s delay parameters corresponding to the service

class ratio low-latency : high-throughput : normal, and HPD fraction f = 0.875 (see

Section 7.3.4). Since we are interested in the incentives our system provides for running

a relay, we vary only the fraction of 600 nodes that are FSCs as opposed to FSRs.

This will allow us to determine how a user’s performance changes by serving as a relay.

The load on the network is unchanged between all experiments. Our simulator closely

approximates empirical Tor traffic loads gathered by McCoy et al. [28].

7.5.3 Results

In BRAIDS, the low-latency service class achieves a significant reduction in download

time compared with Tor, and download times improve as more FSCs convert to FSRs

(Figure 7.2(a)). Since web browsers transfer small amounts of data in most cases,

improvements in download times are noticed even with few new relays. The similarity

in download time when 50% and 80% of FSCs change to relays suggests that these

nodes have reached a lower bound. We note that the best possible download time is 1.6

seconds, since all web clients must make at least one top-level and one embedded object

request, resulting in sixteen 100 ms hops. The normal service class webpage download

time is longer than in Tor, and performance slightly declines as more file sharing users

move to the high-throughput class since normal data is proportionally delayed sixty-

four times as long as high-throughput data (Figure 7.2(b)). Unpaid traffic performance

4ADSL Standard ITU G.992.1 Annex A, ADSL2+ ITU G.992.5 Annex M.
5The consensus document was obtained on January 12, 2010 between 18-19:00:00 CST.
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is best when 80% of the FSCs convert to relays since clients can take advantage of a

significant increase in available bandwidth. These results are outstanding – download

time for normal web traffic does not unusably degrade from performance achieved in

Tor, and running a relay will provide a definite performance boost over those who choose

to remain client-only.

BRAIDS FSRs not only receive an improvement in bandwidth utilization over Tor,

but can also achieve up to approximately 90% better utilization of their bandwidth

compared with BRAIDS FSCs that do not run a relay, even while contributing a fraction

of their bandwidth to Tor. Figure 7.2(c) shows that FSRs performance increases as more

nodes convert to relays. However, since the newly available bandwidth is also consumed

by WCs, relays realize only incremental improvements as the fraction of converting relays

increases. Figure 7.2(d) shows that as more filesharers convert to relays, performance

for FSCs degrades. This happens mostly because a large amount of data from FSRs

is receiving priority over data from FSCs, and the newly available bandwidth is being

consumed by the low-latency and high-priority service classes. For all conversion rates,

FSRs achieve considerably better performance than FSCs.

Overall, our results strongly indicate that BRAIDS users can increase the perfor-

mance of both interactive and non-interactive traffic by starting a relay and contributing

bandwidth to Tor. Therefore, if users want to run BitTorrent or similar file sharing pro-

tocols using BRAIDS, they should run a relay to achieve maximum performance. This,

in turn, will have a positive impact on the entire network since there will be more

bandwidth available for other Tor clients.

7.6 Summary

In this chapter we introduced BRAIDS as a set of practical mechanisms that encourages

users to run Tor relays. We employ completely client-anonymous relay-specific tickets

that allow Tor clients and relays to achieve increased performance while preventing

the double-spending problem. Relays differentiate service into three classes, allowing

them to prioritize traffic and mitigate the negative effect file sharing users have on Tor,

without significantly reducing bandwidth utilization for file sharing clients.
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8.1 Introduction

Tor relays are run by volunteers who altruistically contribute bandwidth and compu-

tational resources to the network. As a result, Tor is usable even by those unable or

unwilling to contribute because they, e.g., have slow connections or are behind restric-

tive firewalls. Unfortunately, network capacity is limited to these altruistic contributions

and has increased sublinearly to Tor’s popularity. In Tor’s current resource model, its

popularity harms its usability and performance, and may therefore have a significant

negative impact on its users’ anonymity [25, 26]. The Tor Project [12] has enumerated

many performance problems they have recognized and are actively pursuing designs

that improve the network in this regard [24]. Recent work has focused on reducing

the existing load on the network [94, 134] and improving the utilization of the existing

relay resources [33, 40, 97], but bolstering capacity while at the same time encouraging

scalability remains a challenging open problem.

Various responses to this capacity and scalability problem have been considered.

Thus far Tor has relied on community support to provide much-needed boosts to its

capacity. For example, Torservers.net [135] is a registered German non-profit organiza-

tion that uses donations to purchase or rent high-bandwidth servers for the public Tor

network. Similarly, the Electronic Frontier Foundation ran a “Tor Challenge” in which

they encouraged people to set up relays and listed the names of those who chose to be

acknowledged for doing so [136]. Unfortunately, the support is limited and inadequate

for Tor to scale to millions of simultaneous users while remaining usable. Currently

Tor is initiating direct funding of relays using government funding it receives for this

purpose. As noted in the blog post announcement, this raises numerous questions,

such as the impact on diversity of the infrastructure [137]. Another unknown is the

sustainability of any resulting capacity increase if this direct funding ceases.

A more scalable way to increase capacity is to require all users to contribute in a

peer-to-peer fashion. However, not only would it be difficult to force users to comply,

this would also turn away some of those most in need of its protections due to an inability

to contribute. Further, combined with a potential lack of user interest in operating and

maintaining servers, this strategy may produce undesirable low bandwidth or unstable

relays that increase network bottlenecks and may actually harm performance [43].
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Numerous proposals to recruit new relays using incentives have appeared in the

literature. Although the incentive approach is promising, past designs have thus far been

plagued with anonymity or efficiency problems. Both the “gold star” scheme [47] and

Tortoise [94] have serious anonymity problems that allow relays’ traffic to be identified,

while PAR [113], XPAY [114], and BRAIDS (Chapter 7 [46]) do not not scale well due

to inefficient protocols. Our goal in this work is to design and evaluate a system that

combines strong anonymity with scalable efficiency.

8.1.1 Lightweight Incentivized Routing for Anonymity

We present LIRA, a unique and scalable approach to creating incentives for users to

contribute computational and bandwidth resources to Tor. Proportionally differentiated

services [34] are the foundation for incentives: users who choose to run relays will be

able to proportionally increase their performance relative to those not contributing.

Further, relays may contribute more resources to increase the amount of their traffic

that gets prioritized, leading to greater network capacity and performance improvements

for everyone. At the same time, LIRA frustrates the adversary’s ability to utilize traffic

priority as a distinguisher of client-initiated and relay-initiated circuits.

LIRA produces incentives with a novel cryptographic lottery design together with a

new circuit scheduling algorithm that prioritizes traffic from those winning the lottery.

To play the relay lotteries, clients send a ticket to each relay in each circuit built in LIRA.

Clients generate random number guesses to produce tickets locally, each of which will be

a winner for a relay lottery with a tunable probability. Relays contributing resources

may collect anonymous coins proportional to their contributions, and exchange the

coins for guaranteed winners to relay lotteries of their choosing. Relays differentiate

performance by prioritizing traffic for winning circuits.

LIRA maintains anonymity. An adversary in LIRA is unable to distinguish relays’

purchased winners from clients’ guessed winners, whereas an adversary in the “gold

star” [47] and Tortoise [94] incentive designs can determine that traffic initiated from

relays with absolute certainty. LIRA provides tunable anonymity: increasing the prob-

ability that a guessed ticket is a winner reduces the adversary’s certainty about the

traffic source.

LIRA is lightweight. Previous schemes either require that an online trusted third
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party participates in routing in order to prevent double spending, as in PAR [113] and

XPAY [114], or that the third party distributes tickets to all relays and all clients, as in

BRAIDS [46]. Neither of these approaches scales well to millions of simultaneous users.

LIRA is scalable because purchased tickets are not managed for clients, but only for the

orders of magnitude smaller set of relays, and there is no spending transaction when

circuits are built.

8.1.2 Contributions

This work’s major contributions may be summarized as follows:

• A unique and novel cryptographic lottery approach to providing incentives to run

Tor relays that combines strong anonymity with scalable efficiency

• A new Tor circuit scheduler that produces performance incentives through pro-

portional throughput differentiation

• A detailed efficiency, anonymity, and incentive analysis and a comparison to

BRAIDS, the state-of-the-art Tor incentive design

• A prototype implementation and experimental validation that LIRA provides in-

centives to contribute

8.1.3 Outline

The rest of this chapter is outlined as follows. Section 8.2 provides details about the

network, our threat model, and our objectives. LIRA’s technical design is given in

Section 8.3, while Section 8.4 analyzes LIRA’s efficiency, anonymity, and incentives.

Our prototype and experimental evaluation are described in Section 8.5, and Section 8.6

concludes.

8.2 Preliminaries

We now discuss specific details about the deployed Tor network that LIRA’s design

considers and describe the circuit building protocol to facilitate an understanding of

how we will propose to modify it. We also introduce a bank as an additional service

that will be utilized in LIRA’s design, specify our adversarial threat model, and clarify
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the objectives of our system. Though LIRA could be applied to various anonymous

communication systems, our exposition will focus on the Tor [11] onion routing network.

8.2.1 Onion-Routing Network

The most popular instantiation of onion routing [10], the Tor overlay network includes

a directory service that publishes information about the available relays. Using the

directory information, clients build three-hop circuits that begin with one of a small

set of entry guard relays and end with an exit relay willing to connect to the client’s

desired Internet service. A circuit is built through a telescoping process: an encrypted

tunnel is first created to an entry guard, after which the tunnel is extended one relay

at a time until the circuit is completely established at the exit relay. During this

building process, the client negotiates an ephemeral key with each relay in the circuit

using a Diffie-Hellman key exchange protocol. Once established, client TCP streams

that conform to the exit relay’s exit policy may be multiplexed over the circuit for ten

minutes, after which the circuit will be marked as dirty and will not permit any new

application connections. The circuit is destroyed once existing application connections

are done using it. All data transferred over the circuit is packaged into uniform-sized

cells and encrypted using the negotiated ephemeral keys.

A relay may be servicing several circuits at any given time. Every circuit that results

in data exchange between any pair of relays is multiplexed over a single TCP onion-

routing connection between the pair. Cells read from this connection are processed and

placed in a scheduling queue before being switched onto the corresponding outgoing

onion-routing connection to the next-hop relay.

Roughly 3000 geographically diverse Tor relays currently transfer a combined total of

about 1700 MiB/s from an estimated 400,000 unique users per day [30]. We parameterize

the onion-routing network size for design and analysis purposes as m onion routers and

n unique users in a given time period. We also assume the existence of a new bank

service B, assisting both in establishing valid lotteries with the relays and in assessing

and rewarding contributions (see Section 8.3). We will assume that all entities can use

the underlying communication network to send each other messages directly.
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8.2.2 Adversary

We will consider the actions of both a malicious network adversary and an honest-

but-curious (i.e. passive) bank. We use the standard network adversary for onion

routing [138], which is local in that he can observe part of the network, is active in

that he can perform computations, send messages, run onion routers, and act as a

client. Although in this chapter we model the bank as a single entity, we expect the

ultimate implementation of the bank to be similar to that of the directory service in the

current public Tor network: multiple entities run the service and form a consensus on

the authoritative documents. Therefore, we assume that the bank faithfully executes

the protocol and only makes observations that are part of that protocol. In particular,

he does not act as an onion router or as a client, only observes messages that are sent

to him, and does not collude with the network adversary.

8.2.3 Objectives

Our goal is to provide incentive for anonymous-network users to run relays while pre-

serving the desirable features of onion routing. Therefore, we will evaluate LIRA in

terms of its functionality, its efficiency, the anonymity it provides, and the incentives it

offers to those users who choose to run a relay.

We require that our system provide the functionality provided by onion routing. In

particular, it should provide bidirectional, stream-oriented, low-latency communication

between pairs of users. In addition, the responder of a stream should only need to run

a standard transport protocol so users can communicate with destinations that aren’t

aware of or designed for anonymous communication protocols.

We also require that the efficiency of our system is comparable to onion routing.

The success of Tor over alternative anonymous-communication protocols can be at-

tributed in large part to its relatively low computational and communication costs. In

particular, our protocol should have costs for each user that are proportional to amount

of his anonymized traffic and for relays as a group that are proportional to the total

amount of anonymized traffic. Moreover, we want the bank’s resource requirements to

be achievable under current Tor network conditions and to scale well with growth.

Our evaluation will consider relationship anonymity [138] in our system, that is, the
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Figure 8.1: An overview of LIRA’s design. (a) Relays coordinate with the bank to learn
which tickets will be winners for their lottery. (b) Relays accumulate anonymous coins
by contributing bandwidth to Tor, and may exchange them for guaranteed winners to
other relay lotteries. (c) Clients send either guaranteed winners or guesses through
their circuits. Relays proportionally differentiate throughput by prioritizing circuits
that submitted winners to every circuit position.

extent to which users can be linked to their communication partners. We will measure

this using the probability that an adversary assigns to a user communicating with his

actual destinations. We will also evaluate the incentives provided by LIRA. As it is

designed to improve throughput and latency for users running relays, we will measure

this performance difference while also considering the extent to which a user can cheat

and obtain these improvements without contributing.

8.3 Design

To achieve the objectives stated in Section 8.2, LIRA employs a cryptographic lottery

and a relay circuit scheduler that prioritizes traffic for users who submit winning lot-

tery tickets. A high level overview of LIRA’s design and the interactions between these

mechanisms is given in Figure 8.1. Through coordination with the bank, the relays

receive information allowing them to recognize winning tickets to their own lottery (see

Figure 8.1(a)). Over time, relays accumulate anonymous electronic coins from the bank

by providing service to the network. These coins may be exchanged for guaranteed

winning ticket values for a variety of relay lotteries (see Figure 8.1(b)). Clients without

coins guess ticket values to produce them locally: their guesses will be winners with

tunable probability. Tickets are passed to the relays through circuit control messages,

and relays cannot distinguish a guessed winner from a guaranteed winner. Relays in
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every circuit position verify tickets and prioritize circuits of submitted winners by pro-

portionally increasing their throughput (see Figure 8.1(c)). We now describe LIRA’s

design in further detail.

8.3.1 Setup

The bank will use RSA blind signatures [139], which allow it to sign a message without

being able to link the signature with an earlier signing request. Let M be the RSA

modulus of the bank, e be the public encryption exponent, and d be the corresponding

private decryption exponent. Each relay r will need a public random value xr ∈ Z∗M
associated with it. These values can be generated by the bank and distributed by the

directory service. For each relay r, the bank computes its signature xdr and sends it

to r. Finally, the system will use a full-domain hash function H : {0, 1}∗ → {0, 1}λ/2,
where λ denotes the security parameter for the system. We can use a cryptographic

hash function such as SHA-1 for H.

8.3.2 Coin Distribution

LIRA rewards relays proportional to the amount of bandwidth they contribute. Since

relays can not be trusted to self-report their bandwidth contributions, we determine

each relay’s contribution with a secure bandwidth measurement scheme such as Eigen-

Speed [140]. Using EigenSpeed, relays opportunistically measure and evaluate each

other’s contributions to form an accurate consensus of relay bandwidth that has been

shown to be resistant to attacks by malicious groups of colluding nodes [43, 140]. The

measurement process runs continuously while a consensus is formed periodically.1

The bank stores and tracks each relay’s bandwidth contribution over time, keeping

an account balance of contributed bytes and updating it with each new bandwidth

contribution consensus. A relay may collect ` digital coins from the bank for every

α bytes it has contributed, where ` is the circuit length (` = 3 in Tor). A coin is

constructed using a blind signature [139] to prevent the bank from later linking the coin

to a given relay (the final signature is unknown to the bank).

1Tor currently computes the directory consensus every hour, which could be amended to include the
bandwidth contribution information.
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Relays use their coins to purchase guaranteed winners from the bank (see Sec-

tion 8.3.3). The bank prevents double spending of these by keeping a database of

previously spent coins that it checks (and possibly updates) when it receives coins in a

purchase request. The size of the database is bounded by a coin expiration period η. A

blind signature simplifies the construction of the coin over some electronic cash schemes

since we do not require double spending detection by a third party after a coin has been

successfully spent.

Advantages of using coins in the manner outlined above include flexibility and trans-

ferability. Coins are flexible because relays may accumulate them during periods when

they are not actively using Tor as a client, and they are valid as long as the bank exists

and the coin has not expired. The expiration period η is set so that the bank can store

and access a list of spent, unexpired coins and may be adjusted as the Tor network

scales. Section 8.4 shows that currently in Tor 127.5 coins would be generated per sec-

ond. If each coin is a 1024-bit signature, we can set η = 28 days, resulting in list of at

most 4.60 GiB and fitting into a single machine’s memory.

A coin is inherently transferable because it is not tied to a specific relay, allowing

the possibility of a secondary economy to form around the purchase and sale of coins.

In such an economy, clients who do not run relays can also obtain coins, improving

anonymity by increasing the uncertainty of the sources of winning tickets.

We configure the ratio of the number of contributed bytes α to the number of

prioritized bytes β received in return to α = (` + 1) · β. By requiring a contribution

` + 1 times that of prioritized consumption, we account for transferring data through

each of the ` relays in the circuit, and also ensure that new relays that join Tor will

only increase its capacity.

8.3.3 Purchasing Guaranteed Winners

Relays will prioritize traffic on circuits for which winning lottery tickets are supplied.

Winners will be determined using a relay-specific permutation that we define below

(Eq. 8.3). Let the size of the permutation’s input space be 2λ, and let gr : [2λ] → [2λ]

be the permutation of relay r. The set of winners for r is {x : 1 ≤ gr(x) ≤ p2λ}, where

p ∈ [0, 1] is a system parameter. Thus a client that guesses an input x randomly will
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obtain a winner with probability p. To guarantee priority, a client can also use coins

earned by providing service to the network to purchase winners.

Setting p presents a tradeoff between anonymity and incentives. If p is small, guess-

ing a winner is unlikely. In this case, prioritized circuits are likely to be paid for and

thus probably originate at a client also running a relay. If p is large, it is more likely

that a circuit will be prioritized by chance, and there will be less reason to run a relay

and earn priority. (We discuss this tradeoff in more detail in Section 8.4.) We adopt a

setting of p = n−1/(2`). For the current Tor network, we estimate n to be 10000, and

thus we would set p = 10−2/3 ≈ 0.22.

The construction of the permutations gr is designed to provide properties similar to

those of a pseudorandom permutation (PRP), although they are technically somewhat

different. In particular, the permutations will appear random to clients so that they

cannot produce winners with probability significantly greater than p. Moreover, they are

efficiently invertible so that the bank can sell winners by choosing outputs 1 ≤ y ≤ p2λ

and providing the corresponding input g−1r (y). The construction also allows the purchase

of winners for r while hiding the identity of r and the winning number from the bank.

If we didn’t want to hide this information from the bank, we could easily implement

the rest of this functionality by using a PRP such as AES. The bank could share different

private keys with each of the relays, and the user would simply purchase a winner by

presenting a coin and specifying a relay. We wish to keep the bank as oblivious as

possible, and thus we use a more involved construction for the lottery permutations.

The essential ingredient of the construction is for the bank to use blind signatures

to obliviously provide a relay-specific input to a certain pseudorandom function (PRF)

(Eq. 8.1). We then use a construction similar to that of Luby and Rackoff [141] to

convert the PRF into a PRP.

Private Evaluation of Pseudorandom Functions

The PRF we use is adapted from one suggested by De Cristofaro et al. [142] that can be

computed obliviously.2 Our construction doesn’t provide full obliviousness with respect

to the bank, but it will provide privacy assuming that the bank does not collude with

2The PRF they suggest is H ′(H(x)d). To compute it, the client computes H(x), obtains an RSA
blind signature on it from the bank, and applies H ′ to the result.
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1. c obtains blinded signature bxdr
either from B or as protocol input.

2. c sends bH(x)xdr to B.
3. B sends H(H(x)xdr) to c.
4. c outputs H(xH(H(x)xdr).

Figure 8.2: PRF Protocol: c obtains fr(x) from B

a relay. The PRF used by relay r is

fr(x) = H(x(H(H(x)xdr))), (8.1)

where, as described above, xr ∈ Z∗M is publicly known.

The PRF Protocol for client c to obtain fr(x) from the bank B is given in Figure 8.2.

We leave the option to obtain a blind signature in Step 1 as an input to the protocol

to enable a batch-mode execution that will be used in the final purchase protocol. The

client will be unable to guess outputs that he doesn’t query with better than random

chance because the relay signature xdr never appears in a message from the server that

hasn’t been blinded or hashed. Moreover, the protocol protects the privacy of the client’s

inputs (doing so is what prevents us from using a simpler PRF, such as H(xdrx)). In

particular, the first unblinded input the bank sees has a factor H(x) and thus appears

random given that the bank doesn’t know x. Including a factor of x before applying H

in the last step prevents the bank itself from learning the final output.

Private Evaluation of Pseudorandom Permutations

We will now consider how to turn this into a permutation. Given f : {0, 1}k → {0, 1}k,
the Feistel permutation Df : {0, 1}2k → {0, 1}2k on x = x1||x0, x1, x0 ∈ {0, 1}k, is

defined as

Df (x1||x0) = (x0||x1 ⊕ f(x0)). (8.2)

This is invertible because x0 is contained in the first k bits, and x1 can be calculated as

f(x0)⊕ (x1 ⊕ f(x0)). Luby and Rackoff showed that applying the Feistel permutation

four times with four pseudorandom functions yields a pseudorandom permutation. We

use this idea, but, in our setting, we will disallow winners at a relay that result in PRF
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1. c randomly chooses a and sends aexr to B.
2. B randomly chooses b and sends baxdr to c.
3. c uses the PRF protocol with input bxdr

to obtain fr(y1) and sets y2 = fr(y1)⊕ y0.
4. c uses the PRF protocol with input bxdr

to obtain fr(y2) and sets y3 = fr(y2)⊕ y1.
5. c uses the PRF protocol with input bxdr

to obtain fr(y3) and sets y4 = fr(y3)⊕ y2.
6. c uses the PRF protocol with input bxdr

to obtain fr(y4) and sets y5 = fr(y4)⊕ y3.
7. c outputs y5||y4.

Figure 8.3: PRP Protocol: c obtains g−1r (y) from B

inputs that have been used before. Thus, we can use the Luby-Rackoff construction

with the single pseudorandom function fr. Thus we obtain a PRP for relay r of

gr(x) = Dfr (Dfr (Dfr (Dfr (x)))) . (8.3)

The PRP in Equation 8.3 is used by the relay to determine if a given ticket is a

winner. To purchase a winner, a client will actually choose a permutation output from

the winning range and apply the inverse permutation to obtain the ticket number. Let

such an output be y = y1||y0, y0, y1 ∈ {0, 1}λ/2. The PRP Protocol for a client c to

obtain g−1r (y) from the bank B is given in Figure 8.3. Observe that this protocol gives

the client quite a bit more information about the function g−1 than a simple oracle

query would. In fact, it reveals enough information for the client to determine values

of g which he has not obtained via the protocol. However, this is only possible for a

negligible quantity of inputs and we will show that relays can limit him to obtaining

guaranteed priority only as many times as he has paid for winners (see Section 8.4).

Protocol to Purchase Winners

The Winner Purchase Protocol run by client c to purchase a winner for relay r from

the bank B is given in Figure 8.4. We emphasize that the bank will only participate

in step 3 of the Winner Purchase Protocol if c presents a valid coin. This protocol is

run entirely over an anonymous onion-routing connection made by c to B. To prevent
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1. c pays B a digital coin.
2. c randomly chooses y ∈ [1, p2λ].
3. c uses the PRP protocol to obtain g−1r (y).

Figure 8.4: Winner Purchase Protocol: c purchases a winner for r from B

the bank from learning when encrypted circuits were made, clients should buy enough

winners at a time to construct γ prioritized circuits, should maintain a reserve of enough

winners to construct γ/2 prioritized circuits, and after depleting their reserve below this

amount should wait a minimum time selected uniformly at random from [0, ω] before

purchasing more winners.

We set γ to balance privacy with respect to the bank with the flexibility of the recom-

mended buying strategy. Increasing γ increases the amount of time between batches of

purchases observed by the bank and thus the number of other users’ prioritized circuits

that hide the buyer’s circuits. On the other hand, decreasing γ decreases the number

of coins a relay should have stockpiled before purchasing winners. We will ask a relay

to run for at least 3 hours before purchasing winners. For a relay providing the current

median bandwidth in Tor of 100 KiB/s [30] and with Tor’s path length of ` = 3, after

3 hours the relay obtains about 79 coins. Each prioritized circuits costs ` coins, and so

we set γ = 26.

We set ω to maximize the number of prioritized connections that could have triggered

a purchase without emptying the reserve of winners. Thus we set ω to the point at

which a client’s reserve of γ/2 winners would become empty had he been making only

prioritized connections. For clients that make new circuits at rate r this happens at

ω = γ/(2r). In Tor, r ≈ 1, and so we have ω = 13 minutes.

8.3.4 Circuit Setup

LIRA slightly modifies the onion-routing circuit-creation protocol (cf. Section 8.2.1)

to accommodate prioritization. Clients use a new ticket cell type to send a lottery

number to each relay on a circuit and attempt to obtain priority. A ticket cell has

the structure [ticket, number ], where the number field contains a value in [1, 2λ]. This

cell is sent to a relay from the client over the circuit and is thus onion-encrypted. In

addition, relays on a circuit signal prioritization status to one other. These messages
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1. c runs onion-routing circuit-creation protocol.
2. For each relay r in the circuit, c sends a ticket

cell with either a purchased winner wr
or random guess xr ∈ [1, 2λ].

3. For every β bytes that pass over the circuit,
c repeats Step 2 with new winners or guesses.

Figure 8.5: Circuit Setup Protocol for client c

are sent directly over an encrypted pairwise connection (e.g. over the persistent TLS

connections that Tor maintains between pairs of relays) with an identifier indicating to

which circuit they pertain.

The Circuit Setup Protocol at the client is described in Figure 8.5. It simply adds

periodic lottery-ticket messages to the standard circuit-creation protocol in onion rout-

ing. Note that the ticket messages are sent onion-encrypted over the circuit and thus

can only be read by the recipient.

Relays determine priority for their circuits using the Circuit Priority Protocol de-

scribed in Figure 8.6. For each position in a circuit, a relay maintains priority values for

itself, for the preceding segment of the circuit, for the succeeding segment of the circuit,

and for the entire circuit. The relay also maintains a counter for the number of priority

bytes that are left under the current prioritization. Observe that the protocol involves

explicit signaling along the circuit to synchronize the priority status of the relays. Thus,

for the circuit depicted at the bottom of Figure 8.1(c), even though the middle relay

has received a winner, it will mark the circuit as dead after it receives a dead relay

priority from either the guard or exit relay.

Also observe that, during the validation of a ticket number, the PRF inputs used

during the four applications of the Feistel permutation (Eq. 8.3) are stored. If a PRF

input used during ticket validation has been seen before, then that ticket is considered

a loser. This prevents a client from reusing old winners and from using PRF outputs

obtained from the bank to construct multiple winners. Finally, note that once a losing

ticket has been observed, the priority status is dead and no further priority is possible

on the circuit.

The value of β, the number of bytes for which a winner provides priority, provides
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Upon receiving data cell
If priority bytes counter is greater than zero

Reduce priority bytes counter by cell size
If priority bytes counter is zero

and self priority status is not dead
Set self priority status to expired
Set circuit priority status to expired.

Upon receiving priority status from adjacent relay
Store status and send to other adjacent relay
If all stored relay priorities are true

Set circuit priority true
If any stored relay priority is dead

Set circuit priority dead
Upon receiving ticket cell with value x

Compute gr(x), storing intermediate PRF inputs
If gr(x) ∈ [1, p2λ]

and intermediate PRF inputs previously unseen
and no stored priority status is dead
Set self priority status to true
Increment priority bytes counter by β
Set circuit priority true

Else set self and circuit priority statuses to dead
Send self priority status to adjacent relays

Figure 8.6: Circuit Priority Protocol for relay r
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a tradeoff between user anonymity and the incentive to run a relay. A small β makes it

unlikely that a guesser, that is, a user who does not buy winners, will maintain priority

over the life of a typical circuit. This reduces the anonymity of a buyer, who we wish to

allow to obtain priority for an entire connection. Setting a large β, assuming the price of

a winning ticket increases proportionally, causes buyers to either use a circuit for a long

time, reducing their anonymity by increasing the linkability of their connections, or to

lose many of the bytes for which priority has been purchased, decreasing the incentive to

earn it. Also, a large β increases the granularity of buying winners, and so more e-cash

must be earned before it can be used, again decreasing the incentive to earn e-cash.

Given these considerations, we use a value of β that is greater than the length of

a typical connection. As discovered by McCoy et al. [28], over 90% of connections

over Tor are HTTP connections. Ramachandran[80] shows data from billions of web

pages showing that the mean size, including all embedded content, is 320 KiB. Cheng

et al. [143] show that the mean YouTube file size is 8.4 MiB. To enable most web

connections as well as such popular activities as viewing videos, we use β = 10MiB.

8.3.5 Circuit Scheduling

To improve the quality of service of qualifying traffic—cells on circuits for which valid

winners have been provided—we incorporate ideas from the differentiated services ar-

chitecture (DiffServ) [86]. More specifically, LIRA schedules circuits using Propor-

tional Throughput Differentiation as described and evaluated in Chapter 5 (Section 5.3).

Scheduling in this model allows us to configure the performance payoff associated with

running a relay, or correctly guessing a winning ticket. Note that LIRA solves the

scheduling classification problem by differentiating circuits that submitted winners from

those that did not.

8.4 Analysis

8.4.1 Efficiency

LIRA preserves all the communication functionality of onion routing while providing

both anonymity and efficiency. This section will consider how LIRA affects the overall
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computational and communication costs of the network.

Overhead

Clients may purchase a winner from the bank for each relay in a circuit to receive β = 10

MiB of prioritized traffic. Purchasing these winners involves ` RSA encryptions for the

client portions of blind signatures and 2` hashes. This cost is on the order of the cost

for building a circuit, which is continuously incurred throughout a Tor client session.

Clients that do not purchase winners incur no extra computational cost by using LIRA.

Our goal is to keep relay CPU costs low because, according to the Tor developers,

the high-bandwidth Tor relays are CPU-bound. LIRA introduces some overhead for

relays with ticket verification, i.e., checking whether or not tickets are winners. This

process involves evaluating the PRP in Equation 8.3 for every β = 10 MiB of transferred

data. Each evaluation involves 12 hash computations, as well as a smaller number of

multiplications and XORs. The DiffServ scheduler has been shown to be efficient [87]

since each scheduling decision must only compute one priority for each class.

The bank is involved in distributing e-cash to relays and selling winning tickets. To

generate e-cash, the bank creates a coin for every α/` = 10(`+1)/` MiB sent by a given

relay. Creating a coin involves a single blind signature, and these coins are given to

the relays using a simple two-message protocol. To sell a winner, the bank must verify

a coin by verifying a signature, provide a blind signature, and then participate in the

batch PRF Protocol four times, each of which involves one hash.

We now consider the bank costs if the entire network is transferring b MiB/s and

the fraction of coins that end up being used by the relays that earn them is f . Let

ρ = `b/(10(` + 1)) be the rate at which coins are generated in this network. The rate

of costly cryptographic operations and communicated messages for each bank service

are outlined in Table 8.1. It shows that the rate of the cryptographic operations is just

a fraction of the total rate of traffic on the network. Table 8.1 also shows that the

communication costs at the bank, in terms of the number of messages, the size of a

digital coin, and the size of a ticket number, are similarly small.
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Table 8.1: Bank Costs

Service Operations Messages

Coin generation ρ signatures ρ coin-size sent
ρ coin-size received

Selling winners ρf verifications ρf coin-size sent
4ρf hashes 2ρf coin-size received
ρf signatures 4ρf winner-size sent

4ρf winner-size received

Current Costs in Tor

To get a more concrete idea of what the costs at the bank might be in practice, we

estimate what it would cost for a bank to serve the current Tor network. In Tor, b = 1700

and ` = 3. The most costly operation by one to two orders of magnitude is signature

generation. In the above setting, the rate of signature generation is 127.5 + 127.5f per

second, where again f ∈ [0, 1]. OpenSSL benchmarks in Linux on an Intel Core2 Duo

2.67 GHz machine show that it is capable of creating 1705 1024-bit RSA signatures per

second, thus a modest machine is easily capable of generating the required signatures.

We also estimate the communication costs at the bank in this setting by using a

signature size of 1024 bits and a ticket-number size of λ = 320 bits. Then the bank

sends at a total rate of 15.94+35.86f KiB/s and receives at a total rate of 15.94+51.80f

KiB/s, easily manageable with a single consumer-grade network connection.

Comparison to BRAIDS

To further understand LIRA’s efficiency, we compare it to the efficiency of BRAIDS

(Chapter 7 [46]), the state-of-the-art Tor relay incentive design. The cost for each

client in LIRA and BRAIDS are similar, however, only the clients that are purchasing

guaranteed winners must pay this cost in LIRA as opposed to all clients that receive

free tickets in BRAIDS. Further, a relay verifying winners in LIRA is at least an order

of magnitude more efficient than a relay verifying tickets in BRAIDS: our OpenSSL

benchmarks indicate LIRA’s winner verification (12 SHA-1 hashes) takes roughly 36
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microseconds, whereas a BRAIDS ticket verification takes roughly 1500 microseconds

(see Table 7.1) on the same hardware.

The most important cryptographic cost is at the bank. LIRA’s bank only needs to

cryptographically pay the relays for some fraction of the total traffic due to its lottery

design. On the other hand, the bank in BRAIDS pays for all traffic by distributing

tickets to all clients. In addition, the number of ticket purchases is proportional to the

amount of e-cash actually used by the relays to obtain prioritized service. If, as we

expect, many relays altruistically provide more service than needed to support their

own use, the system gains significant efficiency over distributing tickets to clients.

If we change the parameters of the BRAIDS scheme to more conservatively com-

pare LIRA3, we observe that BRAIDS requires at least 637.5 signatures per second.

Even if f = 1 and relays spend all their credit, LIRA is more efficient. Moreover,

BRAIDS requires a less computationally efficient partially-blind signature scheme. The

signature-generation protocol in BRAIDS also has higher communication costs in both

directions than RSA blind signatures, and thus is easily greater than LIRA’s costs in

both directions.

8.4.2 Anonymity

We are interested in the extent to which the use of LIRA affects the anonymity of onion

routing. Onion routing security is well-explored in the literature [138, 144, 17, 19, 32],

and its vulnerabilities generally exist after adding our incentive system. Therefore, our

goal is to prevent the anonymity provided by onion routing from being significantly

degraded. In this section we denote by negl(λ) a function that is negligible in λ.4

Single Connection

Consider first a network adversary observing a single connection below the priority cutoff

length of β. If the adversary is observing at a guard node, the user may be identified

3We suppose that BRAIDS creates tickets for only half of the network traffic, as it is designed to cover
Web traffic (58% of Tor traffic [28]). Also, we allow each ticket to buy 10MiB of priority, as in LIRA, and
we give relays a bytes sent/earned ratio of 1/4, also as in LIRA. We then have (1700*3)/(2*4*10)=63.75
tickets created per second, which yields 63.75*20/2 = 637.5 total signatures per second when ticket
exchanges are included.

4A function f that is negligible in λ decreases faster with λ than any inverse polynomial. That is,
f(λ) = o(1/λk) for any k.
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as running a relay if he is connecting to the guard from it. However, the multiple

connections case shows that this would be quickly learned by the guard anyway. Thus

it is a good idea for the user to use his own relays as guards.

Assuming the adversary is not observing at a guard node, from the adversary’s

perspective, LIRA simply adds ticket cells and status signaling messages between pairs

of relays. Users only directly affect the ticket cells. Guessers and buyers generate these

cells according to different distributions, potentially leading to some deanonymization.

The difference lies in the probability that the ticket cells contain a winner or not.

Therefore, we need only consider an adversary’s observations about whether or not the

user inserts winning tickets into each of the relays on a circuit.

Suppose that a user does provide winners for an entire circuit. This happens with

probability 1 for buyers and p` for guessers. The adversary can easily learn that submit-

ted tickets were winners if he controls one of the circuit’s relays. He may also learn this

by observing the speed of traffic to and from a destination under his observation. Over

time, the adversary can learn the distribution of traffic speeds for prioritized and unpri-

oritized traffic and use the separation between these (as demonstrated in Section 8.5) to

infer the priority status of a given observed connection. Assume that buyers consist of

the m relays and guessers consist of the other users of the network at a given time, and

that each user is a priori equally-likely to create a circuit. Then the probability that the

source of a connection is a given relay, based only on its circuit prioritization status, is

1/(m+(n−m)p`), and the probability that it is a given non-relay is p`/(m+(n−m)p`).

Now suppose that a user’s tickets are not winners for the entire circuit. This happens

with probability 0 for buyers and 1 − p` for guessers. As before, the adversary can

determine this in several ways. Buyers never fail to provide a winner, and so the

adversary can infer that the source is a guesser. Given n−m guessers, the probability

that the source is a given one is 1/(n−m). (Of course buyers could intentionally fail to

submit winning tickets at some relays periodically to complicate this analysis. We do

not evaluate such possibility in this chapter.)

We are most interested in the case that there are relatively few buyers, as that would

be true currently if LIRA were deployed in Tor, and we would expect it to remain so

as long as the cost of running a relay is high relative to the benefit of anonymity for

most users. In this case, the probability that a given buyer is the source of a single
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short prioritized connection, based only on its circuit prioritization status, is roughly

1/(m + np`). With p = n−1/(2`), this becomes 1/(m +
√
n). Thus, we can see that

uncertainty over the source increases with the total number of users n, a desirable

property of onion routing that we want to preserve. With few buyers, the probability

that a given guesser is the source of a single short unprioritized connection, based only

on the circuit’s prioritization status, is roughly 1/n, which is the best possible.

Of course, an adversary need not only take into account the prioritization status of a

relay for purposes of deanonymization. Indeed, as discussed, all attacks on onion routing

itself maybe be used in addition to the information provided by LIRA. However, the

action of the incentive system is independent of the underlying onion routing protocol,

and therefore the effect on deanonymization is simply to weight the distribution an

adversary would otherwise infer. For example, suppose that, excluding the observations

from the incentive system, the adversary can infer that the source is a given user with

probability p1. If that user has probability p2 of achieving the priority observed, then,

including those observations, the probability of the user becomes (proportional to) p1p2.

One consequence of this as that LIRA increases the posterior probability of a buyer by

at most 1/p`.

Multiple Connections

Circuits on which more than β bytes are sent include multiple ticket cells from users.

The above analysis applies to any one priority status, but taken together they degrade

the anonymity of the user to the point that they are essentially identified as either a

buyer or a guesser. Suppose a user’s circuit transfers more than (k−1)β bytes. This will

happen when a single connection exceeds that amount. It can also happen if the total

volume of multiple connections sent over the same circuit exceed that amount.5 In this

situation the user updates his priority status k times. The probability that a guesser

maintains priority through all the updates is pk`. Therefore, such a circuit created by

a buyer quickly identifies him as a buyer, and the probability that it is a given buyer

conditional only on the priorities observed is 1/(m+ (n−m)pk`). Guessers are always

5The amount of traffic sent over a circuit depends on the relative rates at which circuits and connec-
tion are created and destroyed. Tor only puts new connections on circuits that have been used for less
than ten minutes, with a preference among used circuits for the youngest.
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identified as guessers when the tickets they submit fail to be winners, and this happens

with an increasing likelihood of 1− pk`.
Users making many circuits over time face the possibility of a similar decrease in

anonymity. If an adversary can observe the priority status of k of a user’s connec-

tion and link them together as belonging to the same (unknown) user, the resulting

anonymity is just as if the user updated the priority status of a given circuit k times.

Some ways the adversary may be able to link connections include controlling a des-

tination at which users are active over long-lived sessions, controlling some exit nodes

and linking together connection by related activities, and controlling some middle nodes

and observing connections coming from the same guard nodes. The adversary is also

be able to link connections at a guard node because they come from the source directly.

A user running a relay may hope to hide that fact from a given guard by connecting

to the anonymity network from a different location and buying tokens from a guard

anonymously through a different guard. However, if he consistently buys priority, his

guards will quickly determine that.

Hiding over the long term the fact that better service is being purchased seems to

be a fundamental issue that any scheme will suffer from to some degree. In BRAIDS,

for example, normal users receive fewer coins than relays, and so they can only be

confused with relays if they save up many coins before buying, and thus few of them

can buy at any one time. On the other hand, allowing users to purchase service without

running a relay, which we ignored in our analysis due to uncertainty, has the potential

to attract many more users than those that run relays. The Torservers.net project [135]

demonstrates that many prefer donating money to running relays. (Note that this also

presents a mechanism whereby purchasing priority can indirectly add commensurate

capacity to the network if all proceeds of such sales are directed into the purchase of

more capacity, such as Torservers.net does.) Further, the widespread use of VPNs for

Internet security and blocking resistance indicate a willingness to pay for privacy.

Bank Privacy

We assume that the bank is semi-honest and only observes messages sent to it. The bank

only observes the amount of e-cash earned by relays, when cash is transferred among

users, and the purchase of winners. Clearly, then, the bank doesn’t learn anything about
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1. B sends challenge relays r0 6= r1 to C.
2. C chooses a random bit z ∈ {0, 1}.
3. C executes the Winner Purchase

Protocol with B for relay rz.
4. B outputs a guess z′ for the value of z.
5. The experiment value is 1 if z′ = z, 0 if not.

Figure 8.7: WPP-REL-IND experiment between B and C

the destinations of connection through the anonymity network, and therefore users have

relationship anonymity with respect to the bank. However, LIRA protects user privacy

even further.

First, all purchases at the bank are made using anonymous connections and anony-

mous coins. Therefore the bank doesn’t learn who is spending e-cash and buying service.

Second, clients batch and randomly time their purchase of ticket winners to hide

when prioritized circuits are made from the bank. Clients should purchase γ` winning

tickets at a time. If a relay prioritizes all his circuits and makes them at Tor’s rate

r ≈ 1 per minute, he purchases winners every γ = 26 minutes. Moreover, the time of the

purchase triggered by a prioritization that reduces a client’s reserve of winners below the

γ/2 threshold is hidden from a bank within a period of ω = 13 minutes. To get an idea

of how many other prioritizations occur during these time periods, consider n = 10000

users making circuits at rate r, each gaining priority with probability p` = 1/
√
n.

Then during a 26 minute period between purchases there are an expected γnp`r = 2600

prioritized circuits from other users and during a 13 minute period there are an expected

1300 such circuits.

Third, the Winner Purchase Protocol hides from the bank the relay identity and the

ticket number of a purchased winner. The indistinguishability experiment WPP-REL-

IND between the bank B and a challenger C shown in Figure 8.7 tests how well the bank

can determine the relay of a purchase. Theorem 1 shows that the observations a bank

makes during a purchase for given relay are indistinguishable from the observations

made during a purchase for a different relay.

Theorem 1 In the Random Oracle Model, Pr[WPP-REL-IND = 1] ≤ 1/2 + negl(λ).

Proof 1 Model H as a Random Oracle. Right before the bank makes a guess, he has
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made a polynomial number of queries to H. During the execution of the Winner Pur-

chase Protocol for relay rz, the bank provides a blind signature and participates in four

executions of the batch PRF Protocol. In providing the blind signature, the bank receives

the value aexrz from the client. This value is random from the bank’s perspective because

a is chosen randomly by the client. The bank also receives bH(yi)x
d
rz , 1 ≤ i ≤ 4. The

bank knows b, xdr0, and xdr1, and so he can tell if any H(yi)x
d
rz is equal to H(x)xdrz′′ for

some x that he has queried to H and z′′ ∈ {0, 1}. Let Query be the event that the bank

has queried H on some such x. If Query occurs, we will assume that z′ = z, and the

experiment value is 1. If Query doesn’t occur, then each H(yi) must be on some yi not

queried by B to H. Thus both sets of potential values of the H(yi), one for z = 0 and

one for z = 1, are equally likely from the bank’s perspective. In this case z′ = z with

probability 1/2.

Thus we simply need to show that Pr[Query] is negligible. The initial input y1 is

distributed randomly from B’s perspective. Therefore the probability that B has queried

H for y1 is negligible. y2 is the result of H(y1H(H(y1)x
d
rz)). y1 is random to B, and

thus the probability that B has queried H on this value is negligible. Assuming this,

y2 is random in B’s view. The probability that y3 and y4 are non-random to B is

negligible for similar reasons. Because with high probability each yi is random to in B

view, Pr[Query] = negl(λ).

We can define an experiment similar to WPP-REL-IND to test how well the bank

can guess the ticket number of a purchase. It can be shown that the bank succeeds in

that experiment with at most a negligible amount over a random guess as well. This

exposition is omitted for space reasons.

8.4.3 Incentives

LIRA is designed to create an incentive for users to run relays or otherwise contribute to

the system. We explore in Section 8.5 the extent to which it successfully provides better

service to users that receive priority. Here we consider if users must, as we intend, earn

e-cash in order to increase the amount of priority they can obtain. Again we denote by

negl(λ) a function that is negligible in λ.
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We first note that the possibility of cheating the system is an important consider-

ation but one less important than performance and preserving anonymity. Regardless

of whether or not a user can deviate from the protocol to obtain more priority, the

anonymity and performance properties of the system still hold. Thus system opera-

tors could experiment with the use of LIRA without compromising the properties the

network already provides. Furthermore, the amount of cheating that will occur in

practice in a network protocol is unclear. BitTorrent, for example, is susceptible to

cheating [145, 146], but it tends to perform well in practice. Somewhat low barriers to

cheating may well be sufficient to induce most participants to comply.

LIRA is designed to force users to pay in order to obtain a winner with probability

greater than p. It achieves this by using an e-cash scheme and a novel cryptographic

lottery. In the e-cash scheme, users must present valid digital coins to participate in

the Winner Purchase Protocol (Figure 8.4). The e-cash scheme prevents coin forgery

as well as double spending.

The winners themselves are obtained by participating in the PRP Protocol (Fig-

ure 8.3). This protocol allows users to observe much more about gr than just the

output, and thus it is not true that gr in fact appears as a PRP. However, the inter-

mediate PRF outputs that the users observe are only allowed by a relay to appear in

one winner. If another ticket is submitted with a previously seen PRF value, the relay

will treat it as a loser. Thus these intermediate values are of no use in producing more

winners than were paid for, and on inputs with unseen intermediate PRF values, the

lottery permutation gr does indeed appear random.

We formalize this property in the security experiment PRP between an adversary A

and a challenger C shown in Figure 8.8. We will show that A succeeds in this experiment

with at most a negligible probability greater than a random chance. But first, we show

that the PRF Protocol actually provides the PRF properties. The PRF experiment

shown in Figure 8.9 tests whether, after executing the PRF Protocol some arbitrary

number of times t, an adversary A can distinguish frc(x) from a random value for more

than t inputs x, where rc is some challenge relay. Lemma 1 shows that the adversary

succeeds in this experiment with a probability that is at most a negligible amount over

random chance.
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1. A outputs relays r = {r1, . . . , rk}
and a challenge relay rc /∈ r.

2. C outputs random values {xr1 , . . . , xrk , xrc}
in Z∗M and signatures {xdr1 , . . . , x

d
rk
}.

3. C executes the PRP Protocol with A
as many times t as requested.

4. A outputs x = {x1 . . . , xt} and {y1, . . . , yt}
and an input xc for grc .

5. C randomly chooses z ∈ {0, 1}. If z = 0,
C sends grc(xc), else C sends a random y.

6. A outputs a guess z′ for z.
7. If ∀iyi = frc(xi), no intermediate PRF

input for grc(xc) appears in x, and z′ = z,
the experiment value is 1; else it is 0.

Figure 8.8: PRP experiment between A and C

1. C generates RSA parameters (M, e, d)
and outputs (M, e).

2. A outputs relays r = {r1, . . . , rk}
and a challenge relay rc /∈ r.

4. C outputs random values {xr1 , . . . , xrk , xrc}
in Z∗M and signatures {xdr1 , . . . , x

d
rk
}.

5. C executes the PRF Protocol with A some t times.
6. A outputs x = {x1, . . . , xt}, {y1, . . . , yt}, xc /∈ x.
7. C randomly chooses z ∈ {0, 1}.
8. C outputs frc(xc) if z = 0 and else a random y.
9. A outputs a guess z′. The experiment value is 1 if

z′ = z, and ∀iyi = frc(xi). Otherwise it is 0.

Figure 8.9: PRF experiment between A and C
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Lemma 1 In the Random Oracle Model and under the RSA assumption, Pr[PRF =

1] ≤ 1/2 + negl(λ).

Proof 2 We can reduce winning this game to solving the RSA problem. We construct a

simulator S for the PRF challenger C and random oracle H. S implements H internally.

S implements parameter selection by relaying RSA parameters from the RSA challenger

to PRF adversary A. S randomly selects the relay signatures xdri, computes the relay

values xri from them, and randomly selects xrc. S executes the challenger side of the

PRF Protocol by storing the response values wi = H(xi) output by A and using random

values vi for each H(H(xi)x
d
rc).

Step 1 of the PRF Protocol is random, and so the distribution of these values given

A’s view is accurately produced by S. The value for H(H(xi)x
d
rc) is indeed random in

A’s view unless the response from A in Step 2 of the PRF Protocol is such that xdrcwi is

equal to some value queried of H by A. S can check for this possibility by dividing all

queries for H by each new wi received from A, raising it to the power e, and comparing to

xrc. If any verification succeeds, S submits that value to the RSA challenger. Under the

RSA assumption, the probability that this happens is negligible. Assuming this doesn’t

happen, C randomly chooses a bit z and outputs a random y. If the outputs xi and yi of

A are such that H(xi) = wi and yi = H(vixi), then S has not “programmed” H with a

value for H(xc)x
d
rc (i.e. choosing a value without knowing the input). S again checks if

H(xc)x
d
rc has been queried by dividing all queries by H(xc) and raising to the e, sending

to the RSA challenger if so. Thus this happens with negligible probability. Assuming it

hasn’t, frc(xc) is random from A’s perspective, and the random y from C has the correct

distribution. z is random and independent of y, and thus z′ = z with probability 1/2.

Therefore, overall C presents the correct view to A except with negligible probability,

and thus Pr[PRF = 1] ≤ 1/2 + negl(λ).

Using Lemma 1, we can now show that the adversary cannot find inputs to the PRP

gr that look non-random and don’t collide with previous input-output pairs obtained

via the PRP Protocol:

Theorem 2 In the Random Oracle Model, Pr[PRP = 1] ≤ 1/2 + negl(λ).

Proof 3 The proof for the pseudorandomness of the Luby Rackoff construction [141]

requires different PRFs for each Feistel permutation only to guarantee that they are
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independently pseudorandom with respect to the previous Feistel rounds. However, our

experiment prevents the adversary from succeeding if the inputs to frc occur more than

once during an evaluation of the permutation grc. Assuming this doesn’t occur, by

Lemma 1, the output of frc in each Feistel round is independent of the previous rounds.

While this theorem shows that users can only themselves produce unused winners

with probability p, a user may try to game the network by creating circuits and deter-

mining their priority. If he attempts to do so without colluding with any relays, he must

determine the priority of the circuit from its performance alone. Suppose that doing so

requires that he send or receive at least c cells on a circuit. Then, to obtain a circuit

with priority, the user must transfer an expected c/p total cells. If the cost of this is

comparable to the amount of traffic a relay needs to transfer in order to earn enough

coins to build a circuit, a rational user might choose to take that more-reliable option.

A user might also run or collude with a relay in order to obtain priority without

paying. A relay on a circuit is able to determine from the messages between adjacent

relays on a circuit its priority status. Therefore, a user could collude with a guard node

to create and destroy circuits until one with priority is obtained. Similarly, the user

could collude with a middle or exit node, although given that the user in this case is

presumably known to the colluding relay, it would seem only to improve performance

without decreasing anonymity to directly connect to that relay. A simple remedy for

this attack that renders it equivalent to testing and creating circuits is to defer the

activation of priority on a circuit until some number c of cells have passed in either

direction. The initial traffic on a circuit is fast even without priority due to EWMA

scheduling, and so the performance impact should be minimal, although we have not

implemented it in our experiments. An additional possible attack is for a colluding relay

in the middle of the circuit to lie about the priority status of either side in order to get

partial priority of a circuit. However, we again observe that it would seem to make little

sense for a user to use a colluding relay as a middle node rather than connect directly.

Also, for all attacks that involve a relay, the costs associated with running a relay are

already being paid, and it would have to be the case that the cost of simply adding

capacity is more than the cost of running a cheating scheme.

Finally, we observe that similar opportunities for cheating exist in other recent

incentive schemes for anonymous communication. The Tortoise scheme of Moore et
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al. [94] allows users to create many circuits to avoid throttling, similar to the multiple-

circuits attacks in LIRA. Also, the BRAIDS design from Chapter 7 is susceptible to

malicious guards as well, in that guards can easily steal the winning tickets intended for

their users. Thus while LIRA does not eliminate cheating, it does offer a substantially

new balance among competing priorities.

8.5 Experiments

We simulate LIRA in an effort to understand the performance benefits possible when

running our incentive scheme. Our experiments are done using Shadow (Chapter 3 [62]),

a scalable, high-fidelity network simulator that is capable of running real Tor binaries

as plug-ins (using the available Shadow plug-in called Scallion [51]). Shadow allows us

to create a private Tor network on a single machine and avoid privacy risks associated

with live network experiments. Shadow experiments are completely controllable and

repeatable, and are faithful to Tor’s protocols since Shadow runs the real Tor software.

In this section, we describe our configured experimental network environment, quantify

its consistency with public Tor network performance, and explore how LIRA affects

performance and improves incentives for a variety of users. Note that all of the experi-

ments described in this section are repeated ten times to diminish random experimental

variances, and each uses Tor software version 0.2.3.13-alpha.

8.5.1 Network Model

Shadow requires a complete-graph network topology that includes properties such as

upstream and downstream bandwidths, latency, jitter, and packet loss. As network mod-

eling is itself a challenging research problem, we rely on previous Tor network modeling

contributions from Chapter 4 [147]. Their work considers every element of the Inter-

net and the Tor network itself that must be modeled to run accurate Tor experiments

in Shadow. Their model is built using real Internet measurements from GeoIP [60],

iPlane [73, 78], and Net Index [75], and is validated with multiple experimentation

platforms and data from the live Tor network itself [30].

We now give an overview of the Tor network model used in our experiments and

discuss how it was modified from the original, the full details of which are presented in
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Figure 8.10: Shadow and public Tor performance are reasonably consistent for various
transfer sizes.

Chapter 4. Our private Tor network consists of 50 generic HTTP servers, 50 Tor relays,

500 Tor clients. Of the 50 Tor relays, there is 1 directory authority, 20 exit relays, and

29 non-exit relays.

Although the original model configured 475 web and 25 bulk clients, a wider range

of client applications would provide a more realistic traffic distribution. Therefore, we

slightly modify the clients to better approximate Tor’s protocol distribution as described

in [28] and [29]. We configure 10 instant messaging clients (im), 465 web HTTP clients

(web), 20 bulk HTTP clients (bulk), and 5 peer-to-peer clients (p2p). The im clients

download 1 KiB files, pausing for one to five seconds after finishing one download and

before starting the next. The web clients download 320 KiB files and pause for 1 to

20 seconds. The bulk clients continuously download 5 MiB files without pausing. All

of the im, web, and bulk clients choose a random HTTP server for each download. The

p2p clients form a “swarm” around a single 700 MiB file that is managed by a p2p

authority. Each pair of p2p nodes connect and continuously exchange 16 KiB blocks

of the file without pausing. Payload download times are measured as an indication of

network performance.
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8.5.2 Model and Simulation Accuracy

As we modified the model as originally described and validated in Chapter 4, we re-

evaluate the consistency of Shadow’s results with live network data. To determine how

well our modeled network approximates client performance in the public Tor network,

we compare download times in a vanilla Tor experiment with measurements of Tor col-

lected by the TorPerf measurement system [83]. TorPerf downloads 50 KiB, 1 MiB,

and 5 MiB files through the Tor network to monitor performance, and records various

download times. Because our clients download differently sized files than TorPerf, we

compare the time to receive the last byte of each of our experimental downloads with

the time to receive the closest byte that is reported by TorPerf. As shown in Figure 8.10,

Shadow does a reasonable job of characterizing the expected performance of the public

Tor network. Performance for im and p2p clients are consistent with TorPerf measure-

ments (Figure 8.10(a)), as are web and bulk downloads below approximately the fiftieth

percentile (Figure 8.10(b)).

The difference in performance in the upper half of the distributions is possibly due

to Tor’s scheduling policy [33], in which circuit priority decreases as its throughput

increases. TorPerf will have higher expected priority than clients in our experiments

since TorPerf downloads once per circuit whereas our clients download multiple times

per circuit. Note that we were unable to confirm this suspicion beyond reasonable doubt

due to a lack of experimental single file circuit downloads.

8.5.3 LIRA Prototype

We implement a research prototype of LIRA as described in Section 8.3 by directly mod-

ifying the Tor source code. To understand how to attribute changes in performance, we

run separate experiments using the default EWMA circuit scheduling algorithm (vanilla

Tor), our new Proportional Throughput Differentiation scheduler (diffserv) based on

work by Dovrolis et al. [87] (see Section 8.3.5), and various LIRA configurations (lira).

Class Differentiation

We configure our new prototype scheduler with “paid” and “unpaid” classes c1 and c2,

and differentiation parameters p1 = 1.0 and p2 = 10.0. Priorities are weighted by taking
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fraction f = 0.875 of the head-of-queue circuit EWMA, and 0.125 of the long-term class

average EWMA. The EWMA throughput algorithms in both classes are configured with

a 30 second half-life, which is also the default in our vanilla experiment and in public

Tor. In our diffserv experiment, we isolate the new scheduler from the LIRA prototype:

all clients are categorized in the unpaid class and there is no ticket guessing or buying.

For each relay in our lira experiments, there is a corresponding client who uses that

relay’s winners to receive priority for all of its downloads. Of these 50 “paid” clients,

we configure 1 im client, 47 web clients, 1 bulk client, and 1 p2p client. The remaining

clients are “unpaid” and will only receive a prioritized circuit by correctly guessing with

probability p = 0.01. Each prioritized circuit may be used for β = 10 MiB of data

transfer, after which new guesses are submitted.

As shown by the cumulative distributions of download times in Figure 8.11, the new

scheduler appears to give slightly preferential service to low throughput im clients and

slightly worse to high throughput p2p clients. The scheduler tends to perform slightly

worse than Tor’s default scheduler, possibly because our prototype implementation has

not been optimized. Our diffserv experiment provides a base upon which LIRA may be

compared. The fundamental mechanism provided by the scheduler that is used to create

performance incentives is tunable class differentiation. Figure 8.11 shows the scheduler’s

ability in this regard, as paid downloads are clearly differentiated from unpaid down-

loads. Note that the loss in performance for paid im downloads in Figure 8.11(a) is an

artifact of the small sample – a single im client on a high latency link due to unfavorable

placement in the network topology.

New Relay Capacity

Figure 8.11 shows performance in a network where only the existing Tor relays receive

priority. We now explore a situation where several existing clients begin routing traffic

for Tor. We consider networks where 5% and 15% of the existing client base6 begin

running a relay, adding a total of 25 and 75 relays and newly-paid clients to the existing

sets of 50. Rationally, each new relay severely rate-limits its contribution so as to earn

only enough winning tickets to support the expected throughput requirements of its

6Of the 5% of clients that begin running relays, we select 1 im, 23 web, 1 bulk, and 1 p2p. Of the
15%, we select 2 im, 69 web, 2 bulk, and 2 p2p.
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(b) 320 KiB Web Clients
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(c) 5 MiB Bulk Clients
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(d) 16 KiB P2P Clients

Figure 8.11: Client download time distribution in vanilla Tor, when using our proposed
scheduler, and after adding LIRA’s design modifications. LIRA adequately differentiates
performance for paying clients without additional capacity.
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client as computed from our vanilla experiment. This is a conservative estimate. Each

client contributes four times its expected client throughput since LIRA will prioritize

1/4 of a relay’s contributed bytes when ` = 3. Therefore, rate-limits are set to 20 KiB/s

for those running im clients, 80 KiB/s for those running web clients, 340 KiB/s for those

running bulk clients, and 128 KiB/s for those running p2p clients. Note that 1/3 of the

added relays are exit relays, roughly the same proportion as in the current Tor network.

The rate-limiting outlined above results in 6.5% and 17.1% total additional network

capacity, and represents a slightly pessimistic approximation of expected client contribu-

tions. To understand both extremes of the range of possible user behaviors, we configure

other networks where the same 15% of new relays chosen above do not rate-limit their

contributions. In the non-rate-limited networks, new relay bandwidth is sampled from

the Net Index distribution [75] and results in a 95.7% and 383.5% increase in network

capacity. Figure 8.12 shows the result of additional capacity on client performance. As

expected and not surprisingly, the added capacity results in a net increase in overall

performance over LIRA without new relays, even under our rate-limiting scenarios. The

net benefit to the network increases for all clients types, and more dramatically as more

capacity is added. Our results confirm that LIRA (and the proportional throughput

scheduler) enables performance incentives for contributors.

8.6 Summary

The Tor network suffers from performance problems partially caused by a lack of relays

willing to altruistically volunteer bandwidth. This chapter presented LIRA, a novel

incentive scheme that increases performance for those who contribute to the network

by running a relay. We have shown that clients who choose to run relays enjoy faster

downloads than those who don’t, due to a novel ticket lottery design and a scheduler

that differentiates service for winning tickets.

LIRA provides a higher degree of anonymity than previous proposals while elimi-

nating the need for clients to contact the bank since, with tunable probability, clients

can randomly self-produce winning tickets.
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(c) 5 MiB Bulk Clients
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Figure 8.12: Client download time distribution as clients begin to run relays. Adding
additional capacity as shown results in a net increase in performance considering both
paid and unpaid clients.
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9.1 Experimentation

This section reviews several experimentation techniques that have been used to test

Tor’s performance and resistance to various attacks. A test environment that accurately

reflects Tor’s behavior is crucial to produce meaningful results. We now briefly explore

experimentation techniques chosen by researchers to evaluate Tor proposals. We note

that: Kiddle [148] provides a comprehensive analysis and discussion of system simulation

and emulation techniques; Naicken et al. [149, 150] provide details on several generic

simulators; and Bauer et al. [65] provide an in-depth survey of experimental approaches

historically used in Tor-related research.

9.1.1 Simulation

Simulation typically involves creating abstract models of system processes and running

multiple nodes in a single unified framework. Experiment management is simplified

since there are many fewer simulation host machines (typically one) than simulated

nodes. By abstracting system processes, simulators can run much more efficiently and

are not required to run in real time. However, the abstraction process has the potential

to reduce accuracy since the simulator may not encompass complex procedures that may

in fact be important to system interaction. Although simulation platforms exist [151,

152, 153, 154], they are not capable of running unmodified versions of the Tor software.

Simulation has often been employed for Tor research, but simulators tend to be

written for a specific problem and may be difficult to apply to a generic context: Mur-

doch and Watson explore Tor path selection strategies and algorithms [49], O’Gorman

and Blott simulate packet counting and stream correlation attacks [50], and Ngan et al.

study the effects of their gold-star priority scheme on Tor performance [47]. These simu-

lators have either become unmaintained or are not publicly available, making published

results challenging to validate.

9.1.2 Emulation

A competing and fundamentally different experimentation approach involves emulation.

An emulator “tricks” an application or operating system that it is running on its own

physical machine, when in fact it is virtualized in software. Emulators require a large
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amount of overhead to ensure the emulated software runs in real time while providing

the virtualization layers needed to emulate an entire system. Therefore, emulation is

potentially more accurate than simulation, but much less scalable: emulators typically

run hundreds of nodes while simulators run thousands.

Due to intensive resource requirements, emulation platforms often utilize a large

testbed of geographically distributed physical hardware. Examples of whole-system

emulation testbeds include PlanetLab [48] and DETER [64]. Both of these frameworks

only supply a few hundred nodes to a user. Several Tor studies have utilized the Planet-

Lab and DETER testbeds for experimenting with traffic analysis attacks [41, 155, 19],

attacks on Tor bridges [156], and relay circuit scheduling [33]. Due to resource consump-

tion and co-location of nodes on each physical machine, results on these testbeds often

suffer from a reduced and false sense of accuracy. Further, distributed (e.g., PlanetLab)

experiments are challenging to manage and control while results are difficult to recreate.

A Tor emulation testbed has recently been simultaneously and independently pro-

posed by Bauer et al. [65] based on the ModelNet emulation platform [68]. The em-

ulation testbed, called ExperimenTor, works by configuring multiple host machines

with new operating system installations. Some of these host machines run a version of

ModelNet link emulators while the remaining machines run Tor and other application

instances. Tor nodes are given IP addresses from separate virtual interfaces to allow

multiple nodes per machine while sending all traffic over the ModelNet hosts to emulate

configured network properties.

LIRA has several advantages over ExperimenTor despite having similar goals and

motivations. First, LIRA is more usable than ExperimenTor, which requires multiple

physical machines, kernel modifications, and complex configuration. LIRA can be run as

a stand-alone user application without root privileges and requires little configuration,

leading to an extremely small barrier to entry and improving accessibility to students,

developers, and researchers around the world. Second, LIRA is more efficient and

scalable than ExperimenTor. LIRA implements a discrete-event simulator which allows

full utilization of computational resources while eliminating the requirement of running

in real time: experiments may run either faster or slower than real time without affecting

accuracy. Conversely, ExperimenTor suffers from both CPU and bandwidth bottlenecks:

the CPUs on the machines running the ExperimenTor testbed must run at far less than
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100 percent utilization and the aggregate traffic load from all application instances must

not exceed the capacity of the physical network connecting the host machines. Both

requirements must be met to ensure the emulated applications do not lag, since lag

would skew and invalidate results obtained in an experiment. LIRA also minimizes the

memory overhead of running multiple applications on a single machine with its “state

swapping” approach to memory management whereas ExperimenTor duplicates entire

copies of the application in memory. Finally, LIRA allows for a richer customization of

the experimental process, e.g. adversarial entities could easily be added to links between

nodes to allow monitoring of network level traffic. Similar customizations would be

difficult to add to an ExperimenTor testbed.

9.2 Performance Tuning

We now enumerate the wide range of recent work on improving Tor’s performance.

9.2.1 Quality of Service

Networks often want to provide a certain quality of service (QoS) to their subscribers.

There are two main approaches to QoS: Integrated Services (IntServ) and Differentiated

Services (DiffServ).

In the IntServ [103, 104] model, applications request resources from the network

using the resource reservation protocol [105]. Since the network must maintain the

expected quality for its current commitments, it must ensure the load of the network

remains below a certain level. Therefore, new requests may be denied if the network

is unable to provide the resources requested. This approach does not work well in an

anonymity network like Tor since clients would be able to request unbounded resources

without accountability while the network would be unable to fulfill most requests due

to congestion and bottlenecks.

In the DiffServ [86] model, applications notify the network of the desired service type

by setting bits in the IP header. Routers then tailor performance toward an expected

notion of fairness (e.g. max-min fairness [85, 98] or proportional fairness [99, 34, 110]).

Leaking this type of information about a client’s traffic flows is a significant risk to
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privacy. Please note that techniques for providing differentiated service without such

risk were explored in Chapter 5 (Section 5.3).

9.2.2 Scheduling

Alternative Tor circuit scheduling approaches have recently gained interest. Tang and

Goldberg [33] suggest each relay track the number of packets it schedules for each cir-

cuit. After a configurable time-period, packet counts are exponentially decayed so that

data sent more recently has a greater influence on the packet count. For each schedul-

ing decision, the relay flushes the circuit with the lowest cell count, favoring circuits

that have not sent much data recently while preventing bursty traffic from significantly

affecting scheduling priorities. In Chapter 5, we investigate new schedulers based on

the proportional differentiation model [110] and differentiatable service classes. Relays

track quality metrics for each service class and prioritize scheduling so that relative

quality is proportional to configurable differentiation parameters, but the schedulers

require a mechanism for differentiating traffic into classes. Finally, Tor’s round-robin

TCP read/write schedulers have recently been noted as a source of unfairness for relays

that have an unbalanced number of circuits per TCP connection [39]. Tschorsch and

Scheuermann suggest that a round-robin scheduler could approximate a max-min algo-

rithm [85] by choosing among all circuits rather than all TCP connections. More work

is required to determine the suitability of this approach in the live Tor network.

Scheduling algorithms, such as fair queuing [157] and round robin [84, 85], affect the

order in which packets are sent out of a given node, but generally do not change the total

number of packets being sent. Therefore, unless the sending rate is explicitly reduced,

the network will still contain similar load regardless of the relative priority of individual

packets. As explained in Section 6.1 and Section 6.2, scheduling does not directly reduce

network congestion, but may cooperate with other bandwidth management techniques

to achieve the desired performance characteristics of traffic classes.
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9.2.3 Congestion

Improving performance and reducing congestion has been studied by taking an in-depth

look at Tor’s circuit and stream windows [40]. AlSabah et al. experiment with dynami-

cally adjusting window sizes and find that smaller window sizes effectively reduce queu-

ing delays, but also decrease bandwidth utilization and therefore hurt overall download

performance. As a result, they implement and test an algorithm from ATM networks

called the N23 scheme, a link-by-link flow control algorithm. Their adaptive N23 al-

gorithm propagates information about the available queue space to the next upstream

router while dynamically adjusting the maximum circuit queue size based on outgo-

ing cell buffer delays, leading to a quicker reaction to congestion. Their experiments

indicate slightly improved response and download times for 300 KiB files.

9.2.4 Relay Selection

Snader and Borisov [43] suggest an algorithm where relays opportunistically measure

their peers’ performance, allowing clients to use empirical aggregations to select relays

for their circuits. A user-tunable mechanism for selecting relays is built into the algo-

rithm: clients may adjust how often the fast relays get chosen, trading off anonymity and

performance while not significantly reducing either. It was shown that this approach in-

creases accuracy of available bandwidth estimates and reduces reaction time to changes

in network load while decreasing vulnerabilities to low-resource routing attacks. Wang

et al. [97] propose a congestion-aware path selection algorithm where clients choose

paths based on information gathered during opportunistic and active measurements of

relays. Clients use latency as an indication of congestion, and reject congested relays

when building circuits. Improvements were realized for a single client, but its unclear

how the new strategy would affect the network if used by all clients.

9.2.5 Transport

Tor’s performance has also been analyzed at the socket level, resulting in suggestions for

a UDP-based mechanism for data delivery [44] or using a user-level TCP stack over a

DTLS tunnel [35]. While Tor currently multiplexes all circuits over a single kernel TCP

stream to control information leakage, the TCP-over-DTLS approach suggests separate
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user TCP streams for each circuit and sends all TCP streams between two relays over

a single kernel DTLS-secured [158] UDP socket. As a result, a circuit’s TCP window

is not unfairly reduced when other high-bandwidth circuits cause queuing delays or

dropped packets.

9.3 Incentives

We now discuss incentives in Tor and other distributed systems.

9.3.1 Tor Incentives

A recognition that Tor is limited by its bandwidth resources has resulted in several pro-

posals for developing performance incentives for volunteering bandwidth as a Tor relay.

New relays would provide additional resources and improve network performance. In-

centive designs for Tor include PAR [113], a scheme where relays accept real monetary

payments from clients in return for routing service. PAR separates payments into anony-

mous coins paid by clients to guard relays, and more efficient identity-bound coins paid

to the remaining relays. PAR and a similar micropayment scheme called XPAY [114]

require an online bank to participate in the routing protocol to verify that the coins

have not been double-spent. The need for the bank to frequently verify coins intro-

duces a fundamental design problem – a trade-off between double spending detection

and anonymity: the bank may use coins to launch an intersection attack. Neither LIRA

(Chapter 8) nor BRAIDS (Chapter 7) suffer from the fundamental trade-off between

double-spending detection and accountability that plagues PAR and XPAY, wherein

anonymity inherently decreases as the ability to detect cheaters improves.

An alternative to using e-cash or other payment-based cryptographic mechanisms to

provide incentives, Ngan et al. propose a lighter-weight scheme in which the fastest 7/8

relays are marked with a “gold star” in the public Tor directory based on measurements

by the directory servers [47]. These relays are given priority as they build circuits

through other gold-star relays, and enjoy improved performance because only fast relays

receive gold stars. Unfortunately, relay anonymity is reduced because the set of potential

initiators of a prioritized circuit (the gold-star relays) is much smaller than that of an

unprioritized circuit (any active client). Not only is the anonymity set of relays is
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significantly reduced since gold star relays can be distinguished from regular relays, but

also the changing membership of the gold star set leads to an intersection attack [17,

19, 115, 20]. Both LIRA and BRAIDS manages the small anonymity set problem by

allowing every user to receive priority.

Tortoise [94] is another lightweight alternative incentive scheme. Moore et al. suggest

in Tortoise a universal rate limit of Tor clients and an exemption from such throttling for

relays marked as stable and fast in the consensus. Not only must Tortoise’s throttling

configurations must be monitored as network load changes but also Tortoise provides

less anonymity than the gold star scheme. In both systems, the timing of relays’ priority

status appearing in the consensus leaks information that enables an intersection attack

over time. However, the intersection attack is improved for the adversary in Tortoise

since gold star nodes retain their gold stars for several months after dropping from the

consensus, whereas Tortoise only unthrottles nodes that are in the current consensus.

Tortoise clients may also multiplex traffic over multiple guards to evade throttling,

thereby weakening the incentives provided by the system.

9.3.2 Incentives in Other Networks

Incentives have been previously proposed for several anonymous and peer-to-peer sys-

tems. Both Anonymizer.com [159] and the Freedom network [160] introduced commer-

cial anonymity systems based on collecting payments for service. While the latter failed,

the former is still in operation and provides a one-hop anonymous proxy based system

for paying clients.

Franz et al. [161] introduce an incentive technique for mix-networks that divides

electronic payments for each mix, but it is inefficient since each hop requires commu-

nication between the mix and mix provider. Figueiredo et al. [162] also introduce an

electronic mix-net anonymity system, but it lacks accountability and robustness. Reiter

et al. [112] build upon coin ripping [111] to develop a strict fair exchange protocol for

mix-nets. However, they require each message recipient to participate in the protocol

which does not align with Tor’s desire to support arbitrary destinations.

Golle et al. [163] discuss incentives for sharing in peer-to-peer networks using a game

theoretic model. They propose a micro-payment or “points” system, where uploads

are rewarded and downloads are penalized, and show that equilibrium is reached by
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balancing uploads and downloads. BitTorrent [164] uses “tit-for-tat” mechanisms to

trade pieces of large files among peers. Peers upload and download pieces cooperatively

and preferentially from other peers in an attempt to maximize local download efficiency.

The Scrivener system [165] uses a credit/debit approach to maintain local histories of

other nodes’ cooperative behavior which is used to enforce fair bandwidth sharing.

Similarly, reputation systems [166, 167, 168, 169] use interaction histories to develop

trust levels for other peers which aids in future decisions to cooperate while incentivizing

trustworthy behavior. Reputation systems are incompatible with Tor since not all relays

are able to bind an interaction to a client.

There has also been some work considering the behavior of participants in an anony-

mous communication network from an economic perspective. Acquisti et al. [45] describe

the costs and benefits of anonymity-network users, identify the challenges in designing

systems that cope with selfishness, and present some possibilities for solving those chal-

lenges. They argue a usage fee as an economic incentive mechanism, however, cost is

then a security objective since it affects the number of users and therefore the anonymity

provided [170]. Humbert et al. [171] provide an analysis of using a scrip system to in-

centivize selfish agents in a cooperative privacy-enhancing system such as an anonymity

network. They establish the existence of a Nash equilibrium, examine its social welfare,

and show how to manage the supply of scrip. Future study of sociological behaviors in

LIRA would be interesting should it be adopted.



Chapter 10

Conclusion and Future Work

178



179

After discussing the importance of safeguarding electronic communication, this dis-

sertation explored an experimentation tool called Shadow and its methodologies for

safely measuring modifications to Tor. We then presented design modifications to Tor

that attempt to enhance performance for Tor’s users while maintaining the level of

privacy Tor currently provides. Our designs and evaluations focussed on resource uti-

lization through a variety of scheduling mechanisms, reducing network load through

several throttling techniques, and two system designs that create performance incen-

tives for users to run relays in order to increase network capacity.

10.1 Future Work

We now enumerate several open questions raised in this dissertation and discuss direc-

tions for future research.

10.1.1 Network Experimentation and Modeling

There are several architectural modifications that can improve Shadow’s run-time per-

formance. The most significant improvement will enhance Shadow’s ability to run in

parallel environments, leading to faster experiments and better utilization of hardware

resources. Shadow may be used to explore a wide range of problems in Tor, includ-

ing alternative transport mechanisms, validation of previous work, and analysis of Tor

attacks under various network configurations and client models.

There are several ways in which our Tor network model could be improved. First,

we could increase the size of the network by improving the software support and ac-

quiring the hardware resources necessary for handling larger networks in the available

experimentation tools. Running at or near scale means we may reduce experimentation

artifacts, such as those created because relay selection probabilities necessarily change

when using only a subset of the existing relays. Larger networks will also provide a

more realistic experimentation environment and more realistic results.

Second, our model may benefit from capacity and link characteristics gathered di-

rectly from Tor relays. This would give us precise statistics about the specific nodes we

are modeling and reduce our reliance on external sources of more generic information

for links between relays. One possible approach to capacity measurement involves using
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packet trains [79], but more work is needed to determine the efficacy of such techniques

in the context of the Tor network. At the same time, many research questions may re-

quire a more detailed topology structure than that modeled in this dissertation. Higher

fidelity of the underlying network topology may be possible by combining data from

both the iPlane[78] and the CAIDA[74] data sets.

Third, determining a better client model would further increase confidence in experi-

mental results. Producing a more robust client model will likely require the development

of algorithms for collecting client statistics in a way that mitigates privacy risks. While

this is challenging since client behaviors are dynamic and hard to capture in a repre-

sentative fashion, it would allow us to increase faithfulness to the live Tor network and

its users. Finally, modeling malicious adversaries and their behaviors may be of specific

interest to future research that analyzes the security of Tor or its algorithms.

10.1.2 Resource Management

A deeper analysis of the intricacies of Tor clients and relays would improve our under-

standing of how various loads and configurations affect our scheduling and throttling

algorithms. Our current scheduling and throttling algorithms may be modified to im-

prove performance by replacing our heuristics with a more accurate classification of bulk

traffic, considering alternative strategies for distinguishing web from bulk connections.

Also of interest is an analysis of scheduling and throttling in the context of congestion

and flow control to determine the interrelation and effects the algorithms have on each

other. Finally, a deeper understanding of our algorithms and their effects on client

performance would be possible through analysis on the live Tor network.

10.1.3 Incentives to Contribute

There are several issues in our BRAIDS design that need further investigation. Our

uniform ticket validity intervals introduce a trade-off between fast ticket turn-around

times and offline relays losing their tickets. The trade-off is due to our imposed ticket

tax which is required to bound the bandwidth load on the bank. Tickets you earn will

not be usable for 2 days in our current design, and you will lose half of your tickets if

you are offline for a day and unable to exchange them.
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BRAIDS would benefit from a more robust ticket distribution scheme, since an

adversary controlling a fraction of IP addresses in Tor can steal a similar fraction of

tickets in each spending interval, and malicious agents receive a greater reward for

stealing tickets than behaving honestly. Further, auditing ticket agents would allow us

to detect cheaters.

Future work may also explore client strategies to enhance our model of client spend-

ing habits and improve our anonymity analysis. Users must be aware of their prioritized

spending habits since spending a large number of tickets (more than a few hundred MB)

will reduce their anonymity and lead to the risk of intersection attacks as in the gold

star scheme. Finally, distributing the bank’s functionality among users, or a small set

of trusted nodes, will reduce bandwidth and CPU limitations, drastically improving

anonymity.

Among numerous possibilities for improving LIRA is developing a better under-

standing of the economics of anonymous incentives and how rational users might be

expected to behave in LIRA or a similar design. Also useful would be a modified incen-

tive structure that provides non-linear payoff for contributed capacity and higher payoff

for more desirable relays such as bridges, exits, and those in more diverse geographic

locations. A distributed bank that functions securely within Tor’s trust model would

improve scalability. Finally, better defenses against strategies for attempting to cheat

the system and improved protection against long-term anonymity problems associated

with linking paid high-throughput users would not only benefit LIRA, but any system

attempting to provide anonymity-protected incentives.

10.2 Final Remarks

Shadow is open-source software that we feel is invaluable for understanding and evaluat-

ing distributed systems like Tor. Our tools and techniques improve our ability to reason

about Tor’s design, and this dissertation has provided the foundations for evaluating

and designing new algorithms and protocols that further enhance Tor’s performance and

anonymity. Although there is still much work to be done, we are optimistic that our

work has improved Tor’s position as an elite, practical, and usable tool for maintaining

online privacy for an increasing fraction of the population.
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