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ABSTRACT

We consider proposals to improve the performance of the Tor over-
lay network by increasing the number of connections between re-
lays, such as Torchestra and PCTCP. We introduce a new class of
attacks that can apply to these designs, socket exhaustion, and show
that these attacks are effective against PCTCP. We also describe
IMUX, a design that generalizes the principles behind these de-
signs while still mitigating against socket exhaustion attacks. We
demonstrate empirically that IMUX resists socket exhaustion while
finding that web clients can realize up to 25% increase in perfor-
mance compared to Torchestra. Finally, we empirically evaluate
the interaction between these designs and the recently proposed
KIST design, which aims to improve performance by intelligently
scheduling kernel socket writes.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Security and Pro-
tection

Keywords

Tor; anonymity; privacy; performance; attack; socket exhaustion

1. INTRODUCTION

Tor is a widely-used tool for low-latency anonymous and uncen-
sored Internet access, consisting of an overlay network of roughly
5000 relay nodes and an estimated 1 million daily users. In order
to provide anonymity, each Tor client periodically chooses three re-
lays and iteratively forms a circuit by telescopically contacting each
relay through the previously contacted relays, so that each relay
knows only two hops in any connection. Because of the high ratio
of clients to relays, and because attracting performance-sensitive
users can improve the privacy of all users, properly allocating lim-
ited bandwidth and processing resources of the relays in a decen-
tralized and privacy-preserving manner is crucial.

One well-recognized performance issue in Tor stems from the
fact that all circuits passing between a pair of relays are multi-
plexed over a single TLS connection. As shown by Reardon and
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Goldberg [20], this can result in several undesirable effects on per-
formance: a single, high-volume circuit can lead to link conges-
tion, throttling all circuits sharing this link [20]; delays for packet
re-transmissions can increase latency for other circuits, leading to
“head-of-line” blocking [19]; and long write buffers reduce the ef-
fectiveness of application-level scheduling decisions [10].

As a result, several researchers have proposed changes in the
transport protocol for the links between relays. Reardon and Gold-
berg suggested that relays should use a Datagram TLS tunnel at the
transport level, while running a separate TCP session at the applica-
tion level for each circuit [20]; this adds a high degree of complex-
ity (an entire TCP implementation) to the application. Similarly,
the “Per-Circuit TCP” (PCTCP) design [5] establishes a TCP ses-
sion for each circuit, hiding the exact traffic volumes of these ses-
sions by establishing an IPSEC tunnel between each pair of relays;
however, kernel-level TCP sessions are an exhaustible resource and
we demonstrate in Section 3 that this can lead to attacks on both
availability and anonymity. In contrast, the Torchestra transport
suggested by Gopal and Heninger [8], has each relay pair share one
TLS session for “bulk download” circuits and another for “interac-
tive traffic.” Performance then critically depends on the threshold
for deciding whether a given circuit is bulk or interactive.

This paper presents a third potential solution, inverse-multiplexed
Tor with adaptive channel size (IMUX). In IMUX, each relay pair
maintains a set of TLS connections (channel) roughly proportional
to the number of “active” circuits between the pair, and all circuits
share these TLS connections; the total number of connections per
relay is capped. As new circuits are created or old circuits are de-
stroyed, connections are reallocated between channels. This ap-
proach allows relays to avoid many of the performance issues as-
sociated with the use of a single TCP session: packet losses and
buffering on a single connection do not cause delays or blocking on
the other connections associated with a channel. At the same time,
IMUX can offer performance benefits over Torchestra by avoiding
fate sharing among all interactive streams, or per-circuit designs
by avoiding the need for TCP handshaking and slow-start on new
circuits. Compared to designs that require a user-space TCP imple-
mentation, IMUX has significantly reduced implementation com-
plexity, and due to the use of a per-relay connection cap, IMUX can
mitigate attacks aimed at exhausting the available TCP sessions at
a target relay.



Contributions. We make the following contributions to the Tor
relay transport literature:

e We describe new socket exhaustion attacks on Tor and PCTCP
that can anonymously disable targeted relays, and demon-
strate how socket exhaustion leads to reductions in availabil-
ity, anonymity, and stability.

e We describe IMUX, a novel approach to the circuit-to-socket
solution space. Our approach naturally generalizes between
the “per-circuit” approaches such as PCTCP and the fixed
number of sessions in “vanilla Tor” (1) and Torchestra (2).

e We analyze a variety of scheduling designs for using a vari-
able number of connections per channel through large-scale
simulations with the Shadow simulator [11]. We compare
IMUX to PCTCP and Torchestra, and suggest parameters for
IMUX that empirically outperform both related approaches
while avoiding the need for IPSEC and reducing vulnerabil-
ity to attacks based on TCP session exhaustion.

e We perform the first large scale simulations of the Torchestra
design and the first simulations that integrate KIST [10] with
Torchestra, PCTCP, and IMUX to compare the performance
interactions among the complimentary designs.

2. BACKGROUND

In this section we first discuss the details of Tor’s internal ar-
chitecture, focusing on how data is sent through the network while
covering some of the specifics of intra-relay communication. In
addition, we review related work on improving Tor’s performance
through changes to the transport and scheduling mechanisms.

2.1 Tor’s Architecture

The Tor overlay network consists of over 5,000 volunteer relays,
providing anonymity by routing data through the network to the
end destination, preventing any single intermediary from learning
the identity of both the source and destination. Clients choose three
relays - a guard, middle, and exit - and constructs circuits through
them. TCP streams can then be multiplexed over the circuit to the
exit relay that forwards the data on to the intended destination. Data
transfered through the circuit is packaged into 512-byte cells and
encrypted in a layered fashion, using shared symmetric keys with
each of the three relays.

In order to create a circuit, the client sends a series of EXTEND
cells through the circuit, each of which notifies the current last hop
to extend the circuit to another relay. For example, the client sends
an EXTEND cell to the guard telling it to extend to the middle. Af-
terwards the client sends another EXTEND to the middle telling it
to extend the circuit to the exit. The relay, on receiving an EXTEND
cell, will establish a channel to the next relay if one does not al-
ready exist. Cells from all circuits between the two relays get trans-
fered over this channel, which is responsible for in-order delivery
and, ideally, providing secure communication from potential eaves-
droppers. Tor uses a TLS channel with a single TCP connection
between the relays for in-order delivery and uses TLS to encrypt
and authenticate all traffic.

Figure 1 shows the internal cell processing architecture of a Tor
relay. Data is read from the channel and stored in an internal input
buffer. Once enough data has been read (e.g. a full TLS record),
the data is decrypted and the cells are sent to their respective circuit
queues. Once a channel is able to write, it uses a prioritized circuit
scheduler to select from all circuits travelling through the channel.
Once a circuit is selected, it’s queue is flushed to the output buffer
on the channel. Once the output buffer has enough data it is then
sent out over the channel to the next relay.
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Figure 1: Internal architecture of cell processing inside a Tor relay.
All cells from a given relay arrive on a single channel, and are then
de-multiplexed to circuit queues for processing. Each circuit queue
is emptied into the channel associated with the next hop relay

2.2 Related Work

The Tor network [7] has been very succesful in attracting users,
servicing millions of clients daily. Since the network consists of
volunteer relays with a very large user base, network resources such
as bandwidth and processing are scarce. In order to sufficiently
handle the increasing usage, a large body of research has been done
looking into potential ways to lower latency and increase perfor-
mance to the end users. These proposals range from dealing with
the limitations of TCP [20, 18, 17], better utilization of network
resources [4, 5], prioritizing web traffic over bulk data [3, 21, 14],
improving ways of dealing with congestion [22, 4, 2], and adding
incentives to act as a relay [12, 13]. We briefly cover the details of
some of the research most relevant to the work in this paper.
TCP-over-DTLS: Reardon and Goldberg [20] were the first to
measure and document several potential performance limitations
due to the use of a single TCP connection for each channel, includ-
ing head-of-line blocking, fate-sharing and buffering delay. In an
attempt to circumvent these problems, they proposed using a Data-
gram TLS (DTLS) transport channel between relays to tunnel TCP
connections through. In addition, each circuit gets its own (user-
space) TCP connection instead of forcing all circuits to share a sin-
gle (kernel) TCP connection. Reardon and Goldberg used micro-
benchmarking to show that this design could significantly reduce
the impact of these problems.
uTLS/uTCP: To address head-of-line blocking while avoiding prob-
lems associated with implementing a user-space TCP stack Nowlan
et al.proposed to replace TLS channels with uTLS/uTCP [18, 19],
a variant in the kernel implementation of TCP, allowing Tor to peek
into the input buffer for full TLS records, decrypt them, and process
them if the cell is the next one for some associated circuit. They
evaluated this implementation using a “circuit-dumbell” topology,
showing that head-of-line blocking was significantly reduced.
EWMA: Tang and Goldberg developed a prioritized circuit sched-
uler [21] using the exponential weighted moving average (EWMA)
calculated on how often cells are sent on a circuit in an attempt to
be able to prioritize interactive traffic over bulk traffic (e.g. Bit-
Torrent). This is currently the scheduler used in the live Tor soft-
ware. Jansen and Hopper [11] used the Shadow simulator to evalu-
ate EWMA scheduling on a large-scale network and found that the
benefits were highly dependent on the network load.

DiffTor: AlSabah, Bauer, and Goldberg [3] develop a novel ap-
proach in using classifiers to more accurately distinguish between
web, bulk, and streaming traffic. Using their highly accurate classi-
fiers, quality of service (QoS) algorithms can be used to give more
opportune treatment to web traffic. The evaluation used throttling
of bulk traffic to improve the throughput of other traffic classes, as
suggested by Jansen ez al. [14].

Traffic Splitting: AlSabah er al.propose Conflux, a dynamic load-



balancing algorithm [2] that can split traffic on one stream across
multiple circuits in an attempt to avoid congestion in the Tor net-
work. By embedding sequence numbers in the cell, the exit can re-
assemble the stream from the multiple circuits to provide in-order
delivery to the end host.

Torchestra: To prevent bulk circuits from interfering with web cir-
cuits, Gopal and Heninger [8] developed a new channel, Torches-
tra, that creates two TLS connections between each relay, one re-
served for web circuits and the other for bulk. This prevents head-
of-line blocking that might be caused by bulk traffic from interfer-
ing with web traffic. The paper evaluates the Torchestra channel
in a “circuit-dumbell” topology and shows that time to first byte
and total download time for “interactive” streams decrease, while
“heavy” streams do not see a significant change in performance.
PCTCP: Similar to TCP-over-DTLS, AlSabah and Goldberg [5]
propose dedicating a separate TCP connection to each circuit and
replacing the TLS session with an IPSEC tunnel that can then carry
all the connections without letting an adversary learn circuit spe-
cific information from monitoring the different connections. This
has the advantage of eliminating the reliance on user-space TCP
stacks, leading to reduced implementation complexity and improved
performance. However, as we show in the next section, the use of a
kernel-provided socket for every circuit makes it possible to launch
attacks that attempt to exhaust this resource at a targeted relay.
KIST: Jansen et al.[10] show that cells spend a large amount of
time in the kernel output buffer, causing unneeded congestion and
severely limiting the effect of prioritization in Tor. They introduce a
new algorithm KIST with two main components: global scheduling
across all writable circuits is done fixing circuit prioritization, and
an autotuning algorithm that can dynamically determine how much
data should be written to the kernel. This allows data to stay inter-
nal to Tor for longer, allowing it to make smarter scheduling deci-
sions than simply dumping everything it can to the kernel, which
operates in a FIFO manner.

3. SOCKET EXHAUSTION ATTACKS

This section discusses the extent to which Tor is vulnerable to
socket descriptor exhaustion attacks that may lead to reductions in
relay availability and client anonymity, explains how PCTCP cre-
ates a new attack surface with respect to socket exhaustion, and
demonstrates how socket resource usage harms relay stability. The
attacks in this section motivate the need for the intelligent manage-
ment of sockets in Tor, which is the focus of Sections 4 and 5.

3.1 Sockets in Tor

On modern operating systems, file descriptors are a scarce re-
source that the kernel must manage and allocate diligently. On
Linux, for example, soft and hard file limits are used to restrict
the number of open file descriptors that any process may have open
at one time. Once a process exceeds this limit, any system call
that attempts to open a new file descriptor will fail and the kernel
will return an EMF ILE error code indicating too many open files.
Since sockets are a specific type of file descriptor, this same is-
sue can arise if a process opens sockets in excess of the file limit.
Aware of this limitation, Tor internally utilizes its own connec-
tion limit. For relays running on Linux and BSD, an internal vari-
able ConnLimit is set to the maximum limit as returned by the
getrlimit () system call; the ConnLimit issetto ahard coded
value of 15,000 on all other operating systems. Each time a socket
is opened and closed, an internal counter is incremented and decre-
mented; if a tor_connect () function call is made when this
counter is above the ConnLimit, it preemptively returns an error
rather than waiting for one from the connect system call.

3.2 Attack Strategies

There are several cases to consider in order to exploit open sock-

ets as a relay attack vector. Relay operators may be: (i) running
Linux with the default maximum descriptor limit of 4096; (ii) run-
ning Linux with a custom descriptor limit or running a non-Linux
OS with the hard-coded ConnLimit of 15,000; and (iii) running
any OS and allowing unlimited descriptors. We note that setting
a custom limit generally requires root privileges, although it does
not require that Tor itself be run as the root user. Also note that
each Tor relay connects to every other relay with which it com-
municates, leading to potentially thousands of open sockets under
normal operation. In any case, the adversary’s primary goal is to
cause a victim relay to open as many sockets as possible.
Consuming Sockets at Exit Relays: In order to consume sockets
at an exit relay, an adversary can create multiple circuits through in-
dependent paths and request TCP streams to various destinations.
Ideally, the adversary would select services that use persistent con-
nections to ensure that the exit holds open the sockets. The adver-
sary could then send the minimal amount required to keep the con-
nections active. Although the adversary remains anonymous (be-
cause the victim exit relay does not learn the adversary’s identity),
keeping persistent connections active so that they are not closed by
the exit will come at a bandwidth cost.
Consuming Sockets at Any Relay: Bandwidth may be traded for
CPU and memory by using Tor itself to create the persistent con-
nections, in which case relays in any position may be targeted. This
could be achieved by an adversary connecting several Tor client in-
stances directly to a victim relay; each such connection would con-
sume a socket descriptor. However, the victim would be able to
determine the adversary’s IP address (i.e., identity). The attack can
also be done anonymously. The basic mechanism to do so was out-
lined in The Sniper Attack, Section II-C-3 [15], where it was used
in a relay memory consumption denial of service attack. Here, we
use similar techniques to anonymously consume sockets descrip-
tors at the victim.

The attack is depicted in Figure 2a. First, the adversary launches
several Tor client sybils. A; and As are used to build indepen-
dent circuits through G1, M1, F1 and G2, M2, Fs, respectively,
following normal path selection policies. These sybil clients also
configure a SocksPort to allow connections from other appli-
cations. Then, A2, As, and A4 use either the Socks4Proxy
or Socks5Proxy options to extend new circuits to a victim V'
through the Tor circuit built by A;. The Ag, A7, and Ag sybils
similarly extend circuits to V' through the circuit built by As. Each
Tor sybil client will create a new tunneled channel to V, causing
the exits 1 and E» to establish new TCP connections with V.

Each new TCP connection to V' will consume a socket descriptor
at the victim relay. When using either the Socks4Proxy or the
Socks5Proxy options, the Tor software manual states that “Tor
will make all OR connections through the SOCKS [4,5] proxy at
host:port (or host:1080 if port is not specified).” We also success-
fully verified this behavior using Shadow. This attack allows an ad-
versary to consume roughly one socket for every sybil client, while
remaining anonymous from the perspective of the victim. Further,
the exits E'; and E» will be blamed if any misbehavior is suspected,
who themselves will be unable to discover the identity of the true
attacker. If Tor were to use a new socket for every circuit, as sug-
gested by PCTCP [5], then the adversary could effectively launch
a similar attack with only a single Tor client.

Consuming Sockets with PCTCP: PCTCP may potentially of-
fer performance gains by dedicating a separate TCP connection
for every circuit. However, PCTCP widens the attack surface and
reduces the cost of the anonymous socket exhaustion attack dis-
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Figure 2: Showing (a) anonymous socket exhaustion attack using client sybils (b) throughput of relay when launching a socket exhaustion
attack via circuit creation with shaded region representing when the attack was being launched (¢) memory consumption as a process opens

sockets using libevent.

cussed above. If all relays use PCTCP, an adversary may sim-
ply send EXTEND cells to a victim relay through any other relay
in the network, causing a new circuit to be built and therefore a
socket descriptor opened at the victim. Since the cells are being
forwarded from other relays in the network, the victim relay will
not be able to determine who is originating the attack. Further, the
adversary gets long-term persistent connections cheaply with the
use of the Tor config options MaxClientCircuitsPending
and CircuitIdleTimeout. The complexity of the socket ex-
haustion attack is reduced and the adversary no longer needs to
launch the tunneled sybil attack in order to anonymously consume
the victim’s sockets. By opening circuits with a single client, the at-
tacker will cause the victim’s number of open connections to reach
the ConnLimit or may cause relay stability problems (or both).

3.3 Effects of Socket Exhaustion

Socket exhaustion attacks may lead to either reduced relay avail-

ability and client anonymity if there is a descriptor limit in place,
or may harm relay stability if either there is no limit or the limit is
too high. We now explore these effects.
Limited Sockets: If there is a limit in place, then opening sockets
will consume the shared descriptor resource. An adversary that can
consume all sockets on a relay will have effectively made that re-
lay unresponsive to connections by other honest nodes due to Tor’s
ConnLimit mechanism. If the adversary can persistently main-
tain this state over time, then it has effectively disabled the relay by
preventing it from making new connections to other Tor nodes.

We ran a socket consumption attack against both vanilla Tor and
PCTCP using Shadow and the network model described in Sec-
tion 5.1. Our attacker node created 1000 circuits every 6 seconds
through a victim relay, starting at time 1800 and ending at time
3600. Figure 2b shows the victim relay’s throughput over time as
new circuits are built and victim sockets are consumed. After con-
suming all available sockets, the victim relay’s throughput drops
close to 0 as old circuits are destroyed, effectively disabling the
relay. This, in turn, will move honest clients’ traffic away from
the relay and onto other relays in the network. If the adversary is
running relays, then it has increased the probability that its relays
will be chosen by clients and therefore has improved its ability to
perform end-to-end traffic correlation [16]. After the attacker stops
the attack at time 3600, the victim relay’s throughput recovers as
clients’ are again able to successfully create circuits through it.
Unlimited Sockets: One potential solution to the availability and
anonymity concerns caused by a file descriptor limit is to remove
the limit (i.e., set an unlimited limit), meaning that ConnLimit

gets set to 252 or 264, At the lesser of the two values, and as-
suming that an adversary can consume one socket for every 512-
byte Tor cell it sends to a victim, it would take around 2 TiB of
network bandwidth to cause the victim to reach its ConnLimit.
However, even if the adversary cannot cause the relay to reach its
ConnLimit, opening and maintaining sockets will still drain the
relay’s physical resources, and will increase the processing time
associated with socket-based operations in the kernel. By remov-
ing the open descriptor limit, a relay becomes vulnerable to per-
formance degradation, increased memory consumption, and an in-
creased risk of being killed by the kernel or otherwise crashing. An
adversary may cause these effects through the same attacks it uses
against a relay with a default or custom descriptor limit.

Figure 2c shows how memory consumption increases with the
number of open sockets as a process opens over a million sockets.
We demonstrate other performance effects using a private Tor net-
work of 5 machines in our lab. Our network consisted of 4 relays
total (one directory authority), each running on a different machine.
We configured each relay to run Tor v0.2.5.2-alpha modified
to use a simplified version of PCTCP that creates a new OR connec-
tion for every new circuit. We then launched a simple file server, a
Tor client, and 5 file clients on the same machine as the directory
authority. The file clients download arbitrary data from the server
through a specified path of the non-directory relays, always using
the same relay in each of the entry, middle, and exit positions. The
final machine ran our Tor attacker client that we configured to ac-
cept localhost connections over the ControlPort. We then used
a custom python script to repeatedly: (1) request that 1000 new cir-
cuits be created by the Tor client, and (2) pause for 6 seconds. Each
relay tracked socket and bandwidth statistics; we use throughput
and the time to open new sockets to measure performance degrada-
tion effects and relay instability.

The stability effects for the middle relay are shown in Figure 3.
The attack ran for just over 2500 seconds and caused the middle
relay to successfully open more than 50 thousand sockets. We no-
ticed that our relays were unable to create more sockets due to port
allocation problems, meaning that (1) we were unable to measure
the potentially more serious performance degradation effects that
occur when the socket count exceeds 65 thousand, and (2) unlim-
ited sockets may not be practically attainable due to port exhaustion
between a pair of relays. Figure 3a shows throughput over time and
Figure 3b shows a negative correlation of bandwidth to the number
of open sockets; both of these figures show a drop of more than 750
KiB/s in the 60 second moving average throughput during our ex-
periment. Processing overhead during socket system calls over



5500

T T T 5500
— 60 second moving averagel

@ 5000 @ 5000

KiB

4500} 4500

Bandwidth (
Bandwidth (KiB

4000 4000

— r=—0.536,

IS

|— 60 second moving average — 1r=0.928, °=0.861
i T T T T

3500 3500

i ; ; .
1000 1500 2000 2500 0 1 2 3 4 5
Tick (s) Number of Open Sockets x10*

(a) (b)

i
0 500

Mean Socket Open Time (usec)
Mean Socket Open Time (usec)

2
0 500 1000 1500 2000 2500 3 4 5
Tick (s) Number of Open Sockets x 10"

(© (d)

—
o

Figure 3: Showing (a) throughput over time (b) linear regression correlating throughput to the number of open sockets (c¢) kernel time to
open new sockets over time (d) linear regression correlating kernel time to open a new socket to the number of open sockets.

time is shown in Figure 3c, and the correlation to the number of
open sockets is shown in Figure 3d; both of these figures clearly
indicate that increases in kernel processing time can be expected as
the number of open sockets increases. Although the absolute time
to open sockets is relatively small, it more than doubled during our
experiment; we believe this is a strong indication of performance
degradation in the kernel and that increased processing delays in
other kernel socket processing functions are likely as well.

4. IMUX

This section explores a new algorithm that takes advantage of
multiple connections while respecting the ConnLimit imposed
by Tor and preventing the attacks discussed above in Section 3.
Both Torchestra and PCTCP can be seen as heuristically derived
instances of a more general resource allocation scheme with two
components, one determining how many connections to open be-
tween relays, and the second in selecting a connection to schedule
cells on. Torchestra’s heuristic is to fix the number of connections
at two, designating one for light traffic and the other for heavy, then
scheduling cells based on the traffic classification of each circuit.
PCTCP keeps a connection open for each circuit between two re-
lays, with each connection devoted to a single circuit that schedules
cells on it.

While there is a demonstrable advantage to being able to open
multiple connections between two communicating relays, it is im-
portant to have an upper limit on the number of connections al-
lowed to prevent anonymous socket exhaustion attacks against re-
lays, as shown in Section 3. In this section we introduce IMUX,
a new heuristic for handling multiple connections between relays
that is able to dynamically manage open connections while taking
into consideration the internal connection limit in Tor.

4.1 Connection Management

Similar to PCTCP, we want to ensure the allocation of connec-
tions each channel has is proportional to the number of active cir-
cuits each channel is carrying, dynamically adjusting as circuits
are opened and closed across all channels on the relay. PCTCP can
easily accomplish this by dedicating a connection to each circuit
every time one is opened or closed, but since IMUX enforces an
upper limit on connections, the connection management requires
more care, especially since both ends of the channel will may have
different upper limits.

We first need a protocol dictating how and when relays can open
and close connections. During the entire time the channel is open,
only one relay is allowed to open connections, initially set to the
relay that creates the channel. However, at any time either relay
may close a connection if it detects the number of open sockets
approaching the total connection limit. When a relay decides to

Algorithm 1 Function to determine the maximum number of connections
that can be open on a channel.

1: function GETMAXCONNS(nconns, ncircs)

2: totalCircs + len(global ActiveCircList)
3: if ncircsis 0 or totalCircs is 0 then
4: return 1
5: end if
6: frac < ncirces/totalCirces
7: totalMaxConns <— ConnLimit - 7
8: connsLeft < total MaxConns — n_open_sockets()
9: maxconns < frac - total M axConns
10: maxzconns < MIN (mazxconns, nconns - 2)
11: mazxzconns < MIN (mazxconns,
nconns + connsLe ft)
12: return mazxconns

13: end function

close a connection, it must first decide which connection should be
closed. To pick which connection to close the algorithm uses three
criteria for prioritizing available connections: (1) Always pick con-
nections that haven’t fully opened yet; (2) Among connections with
state OPENING, pick the one that was created most recently; and
(3) If all connections are open, pick the one that was least recently
used. In order to close a connection C, first the relay must make
sure the relay on the other end of the channel is aware C' is being
closed to prevent data from being written to C' during the closing
process. Once a connection C' is chosen, the initiating relay sends
out an empty cell with a new command, CLOSING_CONN_BEGIN,
and marks C for close to prevent any more data from being written
to it. Once the responding relay on the other end of the channel
receives the cell, it flushes any data remaining in the buffer for C,
sends back another CLOSING_CONN_END cell to the initiating re-
lay, and closes the connection. Once the initiating relay receives
the CLOSING_CONN_END, it knows that it has received all data
and is then able to proceed closing the socket.

Once a channel has been established, a housekeeping function is
called on the channel every second that then determines whether to
open or close any connections. The function to determine the maxi-
mum number of connections that can open on a channel can be seen
in Algorithm 1. We calculate a soft upper limit on the total number
of allowed open connections on the relay by taking ConnLimit
and multiplying it by the parameter 7 € (0,1). ConnLimit is an
internal variable that determines the maximum number of sockets
allowed to be open on the relay. On Linux based relays this is set
by calling getrlimit () to get the file limit on the machine, oth-
erwise it is fixed at 15,000. The parameter 7 is a threshold value
between 0 and 1 that sets a soft upper limit on the number of open
connections. Since once the number of open connections exceeds
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Figure 4: The three different connection scheduling algorithms used in IMUX.

ConnLimit all connect () calls will fail, we want some breath-
ing room so new channels and connections can still be opened, tem-
porarily going past the soft limit, until other connections can be
closed to bring the relay back under the limit. To calculate the limit
for the channel we simply take this soft limit on the total of all open
connections and multiply it by the fraction of active circuits using
the channel. This gives us an upper bound on the connection limit
for the channel. We then take the minimum of this upper limit with
the number of current open connections on the channel multiplied
by two. This is done to prevent rapid connection opening when a
channel is first created, particularly when the other relay has a much
lower connection limit. Finally we take the minimum of that cal-
culation with the number of open connections plus the number of
connections that can be opened on the relay before hitting the soft
limit (that could be negative, signaling that connections need to be
closed). Otherwise the channel could create too many connections,
driving the number of open connections past ConnLimit.

The housekeeping function is called every second and determines
if any connections need to be opened or closed. If we have two few
connections and, based on the protocol discussed in the previous
paragraph, the relay is allowed to open connections on this channel,
enough connections are created to match the maximum connections
allowed. If we have too many connections open, we simply close
enough until we are at the connection limit. We use the previously
discussed protocol for selecting and closing connections, prioritiz-
ing newly created connections in an attempt to close unneeded con-
nections before the TLS handshake is started, preventing unneces-
sary overhead. In addition to the housekeeping function, whenever
a channel accepts an incoming connection, it also checks to see if
the number of connections exceeds the maximum allowed returned
by Algorithm 1. If so, it simply notifies the relay at the other end of
the channel that it is closing the connection, preventing that relay
from opening any more connections as dictated by the protocol.

4.2 Connection Scheduler

For connection scheduling, PCTCP assigns each circuit a dedi-
cated connection to schedule cells on. Torchestra schedules cells
from a circuit to either the light or heavy connection depending on
how much data is being sent through the circuit. A circuit starts
out on the light connection, and if at some point its EWMA value
crosses a threshold it is switched to the heavy connection. To ac-
commodate this, a switching protocol is introduced so the relay
downstream can be notified when a circuit has switched and on
what connection it can expect to receive cells.

While scheduling cells from a circuit on a single connection
makes in-order delivery easier by relying on TCP, with multiple
connections per channel it is not necessary to do so and in fact may

not be optimal to keep this restraint. Similar to the uTLS implemen-
tation in Tor [19] and Conflux [2], we embed an 8-byte sequence
number in the relay header of all cells. This allows the channel to
schedule cells across multiple connections that then get reordered
at the other end of the channel. With sequence numbers in place and
the capability to schedule cells from a circuit across multiple con-
nections, we can evaluate different scheduling algorithms attempt-
ing to increase throughput or “fairness”, for example, where low
traffic circuits have better performance than high traffic ones. We
will briefly cover the different algorithms and heuristics we can use.
Circuit Round Robin: The first scheduler, shown in Figure 4a,
emulates PCTCP by assigning each circuit a single connection to
transmit its cells. When circuits are added to a channel, the sched-
uler iterates round robin style through the circuit list, assigning cir-
cuits to successive connections. If there are more circuits than con-
nections some circuits will share a single connection. When a con-
nection is closed, any circuit assigned to it will be given a new one
to schedule through, with the connections remaining iterated in the
same round robin style as before.

EWMA Mapping: Internal to Tor is a circuit scheduling algorithm
proposed by Tang and Goldberg [21] that uses an exponential mov-
ing weight average (EWMA) algorithm to compute how “noisy”
circuits are being, and then schedule them from quietest to loudest
when choosing what circuits to flush. Using the same algorithm,
we compute the EWMA value for each connection as well as the
circuits. Then, as seen in Figure 4b, the circuits and connections
are ordered from lowest to highest EWMA value and we attempt to
map the circuits to a connection with a similar EWMA value. More
specifically, after sorting the circuits, we take the rank of the circuit
1 < r; < ncires and compute the percentile p; = ﬁ We
do the same thing with the connections computing their percentiles
denoted C;. Then to determine which connection to map a circuit
to, we pick the connection j such that C;_1 < p; < Cj.

Shortest Queue: While the EWMA mapping scheduler is built
around the idea of “fairness”, where we penalize high usage circuits
by scheduling them on busier connections, we can construct an al-
gorithm aimed at increasing overall throughput by always schedul-
ing cells in an opportunistic manner. The shortest queue scheduler,
shown in Figure 4c, calculates the queue length of each connection
and schedules cells on connections with the shortest queue. This is
done by taking the length of the internal output buffer queue that
Tor keeps for each connections, and adding it with the kernel TCP
buffer that each socket has; this is obtained using the ioct 1" func-
tion call and passing it the socket descriptor and TTOCOUTQ.

lhttp://man7 .org/linux/man-pages/man2/ioctl.
2.html
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4.3 KIST: Kernel-Informed Socket Transport

Recent research by Jansen et al.[10] showed that by minimiz-
ing the amount of data that gets buffered inside the kernel and in-
stead keeping it local to Tor, better scheduling decisions can be
made and connections can be written in an opportunistic manner
increasing performance. The two main components of the algo-
rithm are global scheduling and autotuning. In vanilla Tor, libevent
iterates through the connections in a round robin fashion, notifying
Tor that the connection can write. When Tor receives this notifica-
tion, it performs circuit scheduling only on circuits associated with
the connection. Global scheduling takes a list of all connections
that can write, and schedules between circuits associated with ev-
ery single connection, making circuit prioritization more effective.
Once a circuit is chosen to write to a connection, autotuning then
determines how much data should be flushed to the output buffer
and onto the kernel. By using a variety of socket and TCP statistics,
it attempts to write just enough to keep data in the socket buffer at
all times, without flushing everything, giving more control to Tor
for scheduling decisions.

KIST can be used in parallel with Torchestra, PCTCP, and IMUX,
and also as a connection manager within the IMUX algorithm. Af-
ter KIST selects a circuit and decides how much data to flush,
Torchestra and PCTCP make their own determination on which
connection to write to based on their internal heuristics. IMUX can
also take into account the connection selected by the KIST algo-
rithm and use that to schedule cells from the circuit. Similar to the
other connection schedulers, this means that circuits can be sched-
uled across different connections in a more opportunistic fashion.

S. EVALUATION

In this section we discuss our experimental setup, the details
of our implementations of Torchestra and PCTCP (for comparison
with IMUX), evaluate how the dynamic connection management in
IMUX is able to protect against potential denial of service attacks
by limiting the number of open connections, and finally compare
performance across the multiple connection schedulers, along with
both Torchestra and PCTCP.

5.1 Experimental Setup

We perform experiments in Shadow [1, 11], a discrete event net-
work simulator capable of running real Tor code in a simulated net-
work. Shadow allows us to create large-scale network deployments
that can be run locally and privately on a single machine, avoiding
privacy risks associated with running on the public network that
many active users rely on for anonymity. Because Shadow runs
the Tor software, we are able to implement our performance en-
hancements as patches to Tor.” We also expect that Tor running
in Shadow will exhibit realistic application-level performance ef-
fects including those studied in this paper. Finally, Shadow is deter-
ministic; therefore our results may be independently reproduced by
other researchers. Shadow also enables us to isolate performance
effects and attribute them to a specific set of configurations, such
as variations in scheduling algorithms or parameters. This isolation
means that our performance comparisons are meaningful indepen-
dent of our ability to precisely model the complex behaviors of the
public Tor network.

We initialize a Tor network topology and node configuration and
use it as a common Shadow deployment base for all experiments
in this section. For this common base, we use the large Tor con-
figuration that is distributed with Shadow.®> The techniques for pro-

2We modified Tor v0.2.5.2-alpha.
3We use Shadow v1. 9.2, the latest release as of this writing.

ducing this model are discussed in detail in [9] and updated in [10].
It consists of 500 relays, 1350 web clients, 150 bulk clients, 300
perf clients and 500 file servers. Web clients repeatedly download
a 320 KiB file while pausing between 1 to 60 seconds after every
download. Bulk clients continuously download 5 MiB files with no
pausing between downloads. The perf clients download a file every
60 seconds, with 100 downloading a 50 KiB file, 100 downloading
a 1 MiB file, and 100 download a 5 MiB file.

The Shadow perf clients are configured to mimic the behavior of
the TorPerf clients that run in the public Tor network to measure
Tor performance over time. Since the Shadow and Tor perf clients
download files of the same size, we verified that the performance
characteristics in our Shadow model were reasonably similar to the
public network.

5.2 Implementations

In the original Torchestra design discussed in [8], the algorithm
uses EWMA in an attempt to classify each circuit as “light” or
“heavy”. Since the EWMA value will depend on many external
network factors (available bandwidth, network load, congestion,
etc.), the algorithm uses the average EWMA value for the light and
heavy connection as benchmarks. Using separate threshold values
for the light and heavy connection, when a circuit either goes above
or below the average multiplied by the threshold the circuit is re-
classified and is swapped to the other connection. The issue with
this, as noted in [3], is that web traffic tends to be bursty causing
temporary spikes in circuit EWMA values. When this occurs it in-
creases the circuit’s chance of becoming misclassified and assigned
to the bulk connection. Doing so will in turn decrease the average
EWMA of both the light and bulk connections, making it easier
for circuits to exceed the light connections threshold and harder
for circuits to drop below the heavy connection threshold, meaning
web circuits that get misclassified temporary will find it more dif-
ficult to get reassigned to the light connection. A better approach
would be to use a more complex classifier such as DiffTor [3] to de-
termine if a circuit was carrying web or bulk traffic. For our imple-
mentation, we have Torchestra use an idealized version of DiffTor
where relays have perfect information about circuit classification.
When a circuit is first created by a client, the client sends either a
CELL_TRAFFIC_WEB or CELL_TRAFFIC_BULK cell notifying
each relay of the type of traffic that will be sent through the circuit.
Obviously this would be unrealistic to have in the live Tor network,
but it lets us examine Torchestra under an ideal situation.

For PCTCP there are two main components of the algorithm.
First is the dedicated connection that gets assigned to each circuit,
and the second is replacing per connection TLS encryption with a
single IPSec layer between the relays, preventing an attacker from
monitoring a single TCP connection to learn information about a
circuit. For our purposes we are interested in the first component,
performance gains from dedicating a connection to each circuit.
The IPSec has some potential to increase performance, since each
connection no longer requires a TLS handshake that adds some
overhead, but there are a few obstacles noted in [5] that could hin-
der deployment. Furthermore, it can be deployed alongside any al-
gorithm looking to open multiple connections between relays. For
simplicity, our PCTCP implementation simply opens a new TLS
connection for each circuit created that will use the new connec-
tion exclusively for transferring cells.

5.3 Connection Management

One of the main goals of the dynamic connection manager in
IMUX is to avoid denial of service attacks by consuming all avail-
able open sockets. To achieve this IMUX has a soft limit that caps
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Figure 5: Performance comparison of IMUX connection schedulers

the total number of connections at ConnLimit -7, where 7 is a
parameter between 0 and 1. If this is set too low, we may lose out
in potential performance gains that go unrealized, while if it is too
high we risk exceeding the hard limit ConnLimit, causing new
connections to error out leaving ourselves open to denial of ser-
vice attacks. During our experiments we empirically observed that
7 = 0.9 was the highest the parameter could be set without risk-
ing crossing ConnLimit, particularly when circuits were being
created rapidly causing high connection churn.
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Figure 6: Comparing socket exhaustion attack in vanilla Tor with
Torchestra, PCTCP and IMUX.

Figure 6 shows the effects of the socket exhaustion attack dis-
cussed in Section 3 with Torchestra and IMUX included. Since
Torchestra simply opens two connections between each relay, the
attack is not able to consume all available sockets, leaving the re-
lay unaffected. The IMUX results show an initial slight drop in
throughput as many connections are being created and destroyed.
However, throughput recovers to the levels achieved with vanilla
Tor and Torchestra as the connection manager stabilizes.

5.4 Performance

First we wanted to determine how the various connection sched-
ulers covered in Section 4.2 perform compared to each other and
against vanilla Tor. Figure 5 shows the results of large scale exper-
iments run with each of the connection schedulers operating with
IMUX. Round robin clean performs better than both EWMA map-
ping and the shortest queue connection schedulers, at least with re-
spect to time to first byte and download time for web clients shown

in Figures 5a and 5b. This isn’t completely surprising for the short-
est queue scheduler as it indiscriminately tries to push as much data
as possible, favoring higher bandwidth traffic at the potential cost
of web traffic performance. The EWMA mapping scheduler pro-
duces slightly better results for web traffic compared to shortest
queue scheduling, but it still ends up performing worse than vanilla
Tor. This is related to the issue with using EWMA in Torchestra
for classification, that web traffic tends to be sent in large bursts
causing the EWMA value to spike rapidly that then decreases over
time. So while under the EWMA mapping scheme the first data to
be sent will be given high prioritization, as the EWMA value climbs
the data gets sent to busier connections causing the total time to last
byte to decrease as a consequence.

Figure 7 shows the download times when using IMUX with round
robin connection scheduling against vanilla Tor, Torchestra and
PCTCP. While Torchestra and PCTCP actually perform identically
to vanilla Tor, IMUX sees an increase in performance both for web
and bulk downloads. Half of the web clients see an improvement of
at least 12% in their download times, with 29% experiencing more
than 20% improvement, with the biggest reduction in download
time seen at the 75" percentile, dropping from 4.5 seconds to 3.3
seconds. Gains for bulk clients are seen too, although not as large;
around 10% of clients seeing improvements of 10-12%. Time to
first byte across all clients improves slightly as shown in Figure 7a,
with 26% of clients seeing reductions ranging from 20-23% when
compared to vanilla Tor, that then drops down to 11% of clients
who see the same level of improvements compared to Torchestra
and PCTCP.

We then ran large experiments with KIST enabled, with IMUX
using KIST for connection scheduling. While overall download
times improved from the previous experiments, IMUX saw slower
download times for web clients and faster downloads for bulk clients,
as seen in Figure 8. 40% of clients see an increase in time to first
byte, while 87% of bulk client see their download times decrease
from 10-28%. This is due to the fact that one of the main advan-
tages to using multiple connections per channel is that it prevents
bulk circuits from forcing web circuits to hold off on sending data
due to packet loss the bulk circuit caused. In PCTCP, for exam-
ple, this will merely cause the bulk circuits connection to become
throttled while still allowing all web circuits to send data. Since
KIST forces Tor to hold on to cells for longer and only writes a
minimal amount to the kernel, it’s able to make better scheduling
decisions, preventing web traffic from unnecessarily buffering be-
hind bulk traffic. Furthermore, KIST is able to take packet loss into
consideration since it uses the TCP congestion window in calculat-
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Figure 8: Performance comparison of IMUX to Torchestra [8] and PCTCP [5], all using the KIST performance enhancements [10]

ing how much to write to the socket. Since the congestion window
is reduced when there is packet loss, KIST will end up writing a
smaller amount of data whenever packet loss occurs.

6. DISCUSSION

In this section we discuss the potential for an adversary to game
the IMUX algorithm, along with the limitations on the protections
against the denial of service attacks discussed in Section 3 and
some possible ways to protect against them.

Active Circuits: The IMUX connection manager distributes con-
nections to channels based on the fraction of active circuits con-
tained on each channel. An adversary could game the algorithm
by artificially increasing the number of active circuits on a channel
they’re using, heavily shifting the distribution of connections to the
channel and increase throughput. The ease of the attack depends
heavily on how we define an “active circuit”, we can do one of three
ways: (1) the number of open circuits that haven’t been destroyed;
(2) the number of circuits that has sent a minimal number of cells,
measured in raw numbers of using an EWMA with a threshold; or
(3) using DiffTor we can only consider circuits classified as web or
bulk. No matter what definition is used an adversary will still tech-
nically be able to game the algorithm, the major difference is the
amount of bandwidth that needs to be expended by the adversary to
accomplish their task. If we just count the number of open circuits,
an adversary could very easily restrict all other channels to only
one connection, while the rest are dedicated to the channel they’re
using. Using an EWMA threshold or DiftTor classifier requires the
adversary to actually send data over the circuits, with the amount

determined by what thresholds are in place. So while the potential
to game the algorithm will always exist, the worse an adversary can
do is reduce all other IMUX channels to one connection, the same
as how vanilla Tor operates.

Defense Limitations: By taking into account the connection limit
of the relay, the dynamic connection manager in IMUX is able to
balance the performance gains realized by opening multiple con-
nections while protecting against the new attack surface made avail-
able with PCTCP that lead to a low-bandwidth denial of service
attack against any relay in the network. However there still exists
potential socket exhaustion attacks inherent to how Tor operates.
The simplest of these simply requires opening streams through a
targeted exit, causing sockets to be opened to any chosen destina-
tion. Since this is a fundamental part of how an exit relay operates,
there is little that can be done to directly defend against this attack,
although it can be made potentially more difficult to perform. Exit
relays can attempt keep sockets short lived and close ones that have
been idle for a short period of time, particularly when close to the
connection limit. They can also attempt to prioritize connections
between relays instead of ones exiting to external servers. While
preventing access at all is undesirable, this may be the lesser of
two evils, as it will still allow the relay to participate in the Tor
network, possibly preventing adversarial relays from being chosen.
This kind of attack only affects exit relays, however the technique
utilizing the Sock s 5Proxy option can target any relay in the net-
work. Since this is performed by tunneling OR connections through
a circuit, the attack is in effect anonymous, meaning relays cannot
simply utilize IP blocking to protect against it. One potential so-



lution is to require clients to solve computationally intense puzzles
in order to create a circuit as proposed by Barbera ef al.[6]. This
reduces the ease that a single adversary is able to mass produce
circuits, resulting in socket descriptor consumption. Additionally,
since this attack requires the client to send EXTEND cells through
the exit to initiate a connection through the targeted relay, exits
could simply disallow connections back into the Tor network for
circuit creation. This would force an adversary to have to directly
connect to whichever non-exit relay they were targeting, in which
case IP blocking becomes a viable strategy to protect against such
an attack once it is detected.

7. CONCLUSION

In this paper we present a new class of socket exhaustion attacks
that allow an adversary to anonymously perform a denial of service
attacks against relays in the Tor network. We outline how PCTCP,
a new transport proposal, introduces a new attack surface in this
new class of attacks. In response, we introduce a new protocol,
IMUX, generalizing the designs of PCTCP and Torchestra, that is
able to take advantage of opening multiple connections between
relays while still able to defend against these socket exhaustion
attacks. Through large scale experiments we evaluate a series of
connection schedulers operating within IMUX, look at the perfor-
mance of IMUX with respect to vanilla Tor, Torchestra and PCTCP,
and investigate how all these algorithms operate with a newly pro-
posed prototype, KIST.
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