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Abstract Website fingerprinting (WF) enables an adversary to predict
the website a user is visiting, despite the use of encryption or Tor. Previous
work almost exclusively uses synthetic datasets to evaluate the success of
WF attacks. We present GTT23, the first dataset of genuine Tor traces,
intended especially for WF analysis. We obtain it through a measurement
of the Tor network, and, with 1.4 × 107 traces, it is larger than any
existing WF dataset by an order of magnitude. We survey 28 WF datasets
published since 2008 and compare them to GTT23, discovering common
deficiencies of synthetic datasets for drawing conclusions about the WF
effectiveness. We have made GTT23 available to other researchers.
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1 Introduction

Website fingerprinting (WF) is a dangerous attack on web privacy because it
enables an adversary that can observe a user’s outgoing connections to predict
the website the user is visiting [6, 18, 19, 26, 47], even if those connections are
protected with encryption, virtual private networks (VPNs), or anonymizing
networks such as Tor [15]. WF attacks are particularly serious against Tor
because they can break Tor’s anonymity [5, 9–11, 13, 17, 21, 32–35, 38–41, 43,
44, 52, 53, 55]. In WF on Tor, an adversary guesses the user’s destinations from
a vantage point that observes the user. The state-of-the-art WF attacks use
machine learning (ML), where a classifier is trained using labeled traffic traces to
identify the destination. In WF research, labeled data is thus useful for evaluating
attack accuracy, both for training and testing.

Through a survey of 28 WF datasets published since 2008 (see §4), we find that
all but a single prior study consider an adversary that collects labeled traces using
an automated browser that programmatically fetches a set of selected webpages
through Tor [2]. Such synthetic datasets have been criticized as unrepresentative
of genuine Tor traffic along numerous axes [21, 25, 36, 40], and their use has led
WF research to fall victim to several common ML evaluation pitfalls such as the
base rate fallacy [3, 10, 25].

In an effort to address the serious limitations of synthetic WF datasets,
a recent study by Cherubin et al. [10] considers a WF strategy in which the
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adversary uses a Tor exit relay to collect genuine traces, which can be observed
and labeled by a relay in the exit position. Genuine traces exhibit the real-world
diversity in all factors that might influence classifier performance, and they enable
researchers to more accurately evaluate the WF performance that we expect an
adversary might realistically attain. Unfortunately, this prior study was done in a
fully online setting in order to avoid persistently storing genuine data or trained
WF classifiers. As a result, it is impossible to replicate their results, and it is
difficult to build on the methodology. Indeed, many later works have continued
to study WF using synthetically generated datasets [4, 13, 21, 27, 29, 41].

In this paper we present GTT23, the first dataset of labeled genuine Tor
traces. We describe a large-scale Tor relay measurement plan that we designed
to prioritize safety and privacy, which we developed through consultation with
our organization’s Institutional Review Board and with the Tor Research Safety
Board [50] (details on the safety measures appear in App. A of the full version
of this paper [22]). We executed our reviewed measurement process to safely
measure 13,900,621 circuits to 1,142,115 unique destination domains and 68
unique destination server ports during a 13-week measurement period. We analyze
GTT23 and find that 96% of the measured circuits use ports 80, 8080, or 443
to first connect to a destination, that most of the measured circuits carry fewer
than 25 cells (<10.5 KB), and that just a single circuit was measured for over
80% of the measured domains. Our analysis of GTT23 helps demonstrate the
high degree of traffic diversity with which a WF adversary must contend when
launching WF attacks in the real world.

We further evaluate GTT23 to compare its genuine characteristics to those
of existing synthetic WF datasets. First, we survey 28 WF datasets published
since 2008 and identify several common deficiencies of synthetic datasets. We
find that synthetic datasets are composed of a single traffic type (web) using
simplistic user models and static software tools while focusing on website index
pages at uninformed base rates. Second, we conduct a detailed analysis of the
statistical disparities between GTT23 and two recent synthetic datasets that are
specifically designed for more complex website fingerprinting wherein a website
contains multiple accessible webpages. We find that the circuit-length variation
and website base rates are still not reflected well in the synthetic datasets despite
the improved modeling.

We conclude that, because GTT23 contains genuine traces of websites accessed
by real Tor users at natural base rates, it is more realistic than any existing
synthetic dataset, and thus enables WF evaluations that more accurately estimate
real-world WF performance. We also note that, while GTT23 was designed to
facilitate WF research, it may be useful for other research on Tor traffic analysis,
such as correlation attacks [31] or malware detection [16].

This dataset has been available to researchers upon request since 2024 [23].
This report contains details and analyses of the data to further the understanding
and use of GTT23 and to promote the development of similar datasets. A full
version of this paper is available with additional details [22].
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2 Methodology

2.1 Background

Tor [15] uses onion routing to anonymize TCP connections on the Internet. The
Tor network consists of a globally distributed set of relays. Each connection
through Tor to an outside server is sent through a three-hop circuit. This design
is intended to prevent an adversary observing any single relay, or one observing
either the client or destination but not both, from being able to identify both
the source and destination of a connection. In the Tor network today, there are
currently over 8,500 relays and over 3 million daily users [49].

To use Tor, a client builds circuits, each passing through an entry, a middle,
and an exit relay. A circuit supports multiplexing multiple streams of end-to-end
TCP communication with internet services. When a new TCP connection to a
service is requested by an application (e.g., Tor Browser), the Tor client will
use fixed-size application-layer control messages called cells to instruct the exit
relay to (1) resolve the service’s domain name, and (2) make a TCP connection
to the service. Each of a circuit’s TCP byte-streams is subsequently forwarded
bidirectionally through the circuit in data cells. Circuit traffic observed from
a single network location can be represented as a time-ordered sequence of
(direction, time) pairs (one for each cell sent through a circuit), called a cell trace.

A TCP stream may be assigned to any circuit with an exit relay that allows
connection to the destination’s IP address and port; if no such circuit exists, a
new one is built after choosing an exit independently at random from among
those with conforming exit policies and weighted by relay bandwidth to balance
load. However, Tor Browser employs additional stream assignment rules. When
loading a webpage URL, Tor Browser computes the URL’s first-party domain
name (FPDN) and instructs the Tor client to assign all streams created to load
that URL (including those to third-party domains to load embedded objects) on
a circuit uniquely associated with the FPDN and isolated from other streams.

Browsing to a page of a new website in Tor Browser will result in a unique
FPDN and a new circuit that first resolves a DNS query for the FPDN and
then loads the page, while subsequent subpages of that website will be loaded
through the same circuit. Cherubin et al. [10] recognized that (1) the FPDN in
the circuit’s first DNS query can be used to label the website of a circuit’s cell
trace, and (2) an adversary running exit relays can observe genuine cell traces
and their domain name labels, which can be used to train WF classifiers and
produce more realistic estimates of WF performance. (Non-exit relays can observe
cell traces but not domain names due to onion routing [48].) Unfortunately, their
study considered an online setting to avoid persistently storing sensitive data or
classifiers; thus a new measurement is needed to build on the methodology.

In website fingerprinting, an adversary uses the volume and timing of traffic
to infer which website is being visited [25]. This attack is suited to breaking the
privacy of traffic sent through VPNs or Tor because their traffic plaintext and
destination are unobservable. In a WF attack, the adversary observes the client
and its traffic. Typical WF attacks use machine-learning classifiers trained on

3



traffic traces labeled with the destination website (e.g., [11, 41, 43]). The classifiers
are applied to traffic traces from the target client to identify the destination
website. In the Tor setting, unlike for VPN traffic, WF classifiers are typically only
given when a cell appears and in which direction because of Tor’s fixed-size cells,
which can either be recorded directly by a malicious Tor relay or reconstructed
from TCP packet payloads by a network observer.

2.2 Measurement Process

We designed a measurement process that employs one or more Tor exit relays to
safely measure genuine Tor cell traces and FPDN labels. The traces and labels
are collected into a dataset for subsequent analysis. Each participating relay runs
a patched version of Tor that we modified to support our measurement as follows.

Circuit Selection When a relay observes a new circuit, it rejects any non-
exit type circuit (i.e., onion-service and internal circuits) from measurement.
Additionally, the relay applies a probabilistic sampling procedure such that 80%
of exit-type circuits are rejected during high-volume measurement intervals, and
98% of exit-type circuits are rejected during low-volume measurement intervals.
Sampling helps us limit the total amount of data collected and provides plausible
deniability: any individual circuit created through a participating relay is unlikely
to exist in the dataset. Non-rejected circuits are selected for further measurement.

Circuit Measurement A relay internally stores circuit metadata and cell
traces during operation for the randomly selected exit-type circuits. To protect
some of this metadata, we use the encoding function

H(x) = base64encode(sha256(x||salt)) (1)

where salt is chosen uniformly at random, fixed on all measurement relays for the
duration of the measurement period, and then destroyed. The relay iteratively
constructs a circuit metadata record for each selected circuit (applying H(·) to
domain names) until either the circuit closes or N cells have been observed,
whichever occurs first.3 The metadata record is then exported via Tor’s control
interface to an external process that compresses it, encrypts it with a public-key
encryption scheme,4 and writes it to persistent storage.

Each metadata record includes the following: (1) day : an integer number of
days that have elapsed since the start of the measurement; (2) domain: H(d) where
d is the domain name of the circuit’s first exit stream;5 (3) shortest_private_suffix :
H(s) where s is the shortest private suffix of the pre-image of domain computed
using Mozilla’s public suffix list and libpsl [7]; (4) port : the server port used
when connecting the circuit’s first exit stream to its destination; and (5) cells:
a list of at most N cell metadata items. Each cell metadata item is a 4-tuple
containing the time the cell was observed relative to the circuit’s creation time,
3 We use N = 5,000 cells to remain consistent with previous work.
4 We encrypt to an offline secret key to prevent on-device decryption.
5 Circuits for which the first exit stream connects to the destination with an IP address

instead of a domain name are rejected from measurement.
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an integer encoding the cell’s direction, and two integers encoding the cell and
relay command, respectively [14].

3 Measurement and Analysis

3.1 Measurement Details

We execute a large-scale Tor measurement study following our methodology
from § 2. First, we run a total of eight exit relays, four on each of two identical
machines hosted by the Calyx Institute (a nonprofit research and education
organization located in NY, USA). Each machine is equipped with 2 Intel Xeon E5-
2695 v2 12-core CPUs (48 hyper-threads in total) and connected to an unmetered
1 Gbit/s symmetric network access link. Second, we run a measurement over a
13 week period in 2023; we assign weeks 1, 7, and 13 as high-volume intervals,
and the remaining 10 weeks as low-volume intervals. We combined all recorded
circuit metadata records into a single dataset which we call GTT236 [23].

3.2 Data Analysis

In total, GTT23 contains 13,900,621 circuits, 10,557,898 of which were observed
during the high-volume weeks (1, 7, and 13) and 3,342,723 of which were observed
during the remaining 10 low-volume weeks.
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Figure 1: The daily total (bars) and weekly mean (text) number of circuits during
our 13 week measurement.

The daily total and weekly mean number of GTT23 circuits are shown in Fig. 1;
the daily mean during high-volume weeks is 502,757 and the daily mean during
low-volume weeks is 47,753. We observe a slight increase in circuit counts during
the latter half of the measurement period which we attribute to natural fluctuation
in network usage and the load-balancing weights used for relay selection.
6 GTT: an acronym for “Genuine Tor Traces”; 2023: the year of measurement.
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Figure 2: The total number of GTT23 circuits by server port, with IANA-assigned
service names [51].

GTT23 contains circuits measured across 68 unique destination server ports.
The distribution of the number of measured circuits across the top-ten most-
popular service ports is shown in Fig. 2 (with a logarithmic x-axis, and the
IANA-assigned service names shown in the legend). We observe that 13,356,305
circuits (96%) use ports 80, 8080, or 443 to connect their first stream to a
destination service; these ports are assigned to HTTP and HTTPS by the
IANA [51]. The vast majority of the remaining circuits use port 43 or 4321, which
are respectively assigned to WhoIs and Remote WhoIs services by the IANA.
Frequent connections to these ports have been observed in prior studies of Tor
exit traffic [45, 46]: Sonntag observed that they corresponded to a large number
of reverse DNS lookups scanning several large networks [45].

The cumulative distribution of the number of observed cells per GTT23 circuit
is shown in Fig. 3. We were surprised to find that most circuits are extremely
short: the median number of cells over all circuits is just 25, which would support
at most 10.5 KB of application payload after accounting for control cells and
cell-header overhead. For comparison, we also plot in Fig. 3 the circuit length
distribution for the subsets of circuits containing at least 25, 100, and 1,000 cells,
respectively corresponding to 10.5, 47.8, and 496 KB of application payload. For
reference, the HTTP Archive reports that over 90% of webpages have a transfer
size greater than 450 KB across samples of 12 and 16 million desktop and mobile
URLs, respectively. Thus, we believe that most GTT23 circuits did not carry full
webpage transfers.

GTT23 contains circuits measured across 1,142,115 unique destination do-
mains. The distribution of the number of measured circuits per domain is plotted
in Fig. 4. We observe a close fit to a power-law distribution (shape=0.023,
loc=0.769, scale=1,495,234), where few popular domains dominate the measure-
ment while a long tail exists with just a single circuit measured for 908,422 (80%)
of the domains.
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Figure 3: Cumulative distribution of the number of cells per circuit over subsets
of GTT23 circuits.
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Figure 4: The number of GTT23 circuits per domain; we observe a close fit to a
power-law distribution.

Note that obtaining realistic base rates for the domains visited by Tor users
is a major advantage of GTT23 over synthetic datasets. In open-world binary
classification, the negative class is composed of traces to all sites other than
the monitored ones. Thus, the false-positive rate, which is crucial for estimating
precision [52], depends on the base rates in the negative class. Similarly, in a
multiclass setting (open or closed world), overall WF accuracy depends on the
base rates of each class.

Fig. 5 shows the cumulative distribution of two measures of circuit length
variability for each domain with more than one GTT23 circuit. The median
Coefficient of Variation (i.e., the standard deviation divided by the mean) shows
that more than half of the domains have a circuit length standard deviation
greater than the mean, while the Coefficient of Dispersion (i.e., the variance
divided by the mean) shows that most domains have a relative variance in circuit
lengths of multiple hundreds of cells. The high variability in circuit lengths is
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Figure 5: Cumulative distribution of circuit length variation across domains with
at least two GTT23 circuits.

consistent with our prior observation that most of the measurement circuits are
short, and suggests that many Tor circuits may completely or prematurely fail.

4 Evaluation

In this section, we compare GTT23 and synthetic datasets to understand how
well the synthetic datasets model some of the genuine data characteristics that
are important for WF.

4.1 Deficiencies of Synthetic Datasets

We survey 28 datasets proposed for WF tasks covering the years 2008–2025.
In Table 1 we provide an overview of the properties of a subset of the surveyed
datasets selected for their size, complexity, and frequency with which they are
used to evaluate later attacks. See Table 2 in App. A for the full comparison.

Like GTT23, these datasets also consist of Tor traffic traces labeled with a
destination domain, and they record traffic that actually transited the Tor network
and connected to some third-party server. However, we find that every dataset
exhibited similar deficiencies: (1) they consist of only web traffic; (2) they are
collected using simplistic user models and static software tools, almost exclusively
at the client position; (3) they primarily focus on fetching popular webpages; and
(4) they do not contain informed base rates. In contrast, real Tor clients use a
wide variety of software and software versions, interact with non-web services, and
do more than just non-interactively fetch selected webpages. These deficiencies
make it difficult to use existing datasets to draw meaningful conclusions about
the effectiveness of a WF attack directed at real Tor users [10, 25].

In comparison, GTT23 is the only dataset with traces sampled from genuine
traffic created by real Tor users interacting with real internet services at natural
base rates. GTT23 is not limited to only web traffic: it contains traces of different
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types of internet activity and supports the evaluation of WF attacks and defenses
based on websites’ first-party domain names (see § 2.1). These traces better
represent the WF problem, where an adversary observes undifferentiated traffic
from real users and cannot assume that the traffic is just to index web pages or is
even to a website at all. Thus, GTT23 can serve to more accurately evaluate the
threat posed by a real-world WF adversary. Moreover, GTT23 is larger than the
previous largest dataset (the AWF dataset [40]) by an order of magnitude which
is important to assess modern deep learning attacks requiring many training
examples. Extended results and analysis from our dataset survey appear in
App. A.

Table 1: Select WF Datasets (full details in Table 2)
Dataset Year Size Description†

k-NN [53] 2014 1.4×104 Web, top index pages
AWF CW 900 [40] 2017 2.3×106 Web, top index pages
AWF Open [40] 2017 8 ×105 Web, top index pages
DF [43] 2018 1.4×105 Web, top index pages
GoodEnough [37] 2020 2 ×104 Web, top index pages + subpages
BigEnough [29] 2021 3.8×104 Web, top index pages + subpages
Multi-tab [13] 2022 5.7×105 Web, top index pages, multiple tabs

GTT23 2023 1.4×107 Genuine traffic, real user behavior, visited services,
natural base rates

† All but GTT23 synthetically fetch webpages using automated tools.

4.2 Genuine and Synthetic Disparities

We analyze the statistical disparities between GTT23 and synthetic datasets to
understand dataset quality. We place particular emphasis on the trace features
found in prior work [17] to be informative for WF. We focus our analysis on
two popular synthetic datasets, BigEnough [29] and GoodEnough [37], that were
specifically designed to model website fingerprinting; both datasets contain at
least ten pages per website, and so they represent among the highest website
diversity of the datasets surveyed.

Dataset Composition The GTT23 dataset contains traces generated from
real users interacting with any services accessible via the internet (including non-
web services), whereas synthetic datasets such as BigEnough and GoodEnough
contain traces generated from automated visits to small number of popular
websites. Empirical data from this work and previous work suggests that Tor
users do not just visit popular websites. First, Fig. 2 shows that a long tail (≈4%)
of GTT23 traces are generated from interactions with hosts not running on known
web ports such as 80, 443, or 8080. Second, a privacy-preserving measurement of
the Tor network performed in 2018 [28] determined that over 20% of web streams
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Figure 6: Per-domain statistics computed from the GTT23, BigEnough [29], and
GoodEnough [37] datasets. For statistical rigor, here we consider traces with at
least 1,000 cells and, among those, domains with at least 30 traces.

exiting the Tor network access a host not in the Alexa Top 1 Million list. This
long tail of activity is not reflected in the synthetic datasets and is likely to make
the WF classification task more difficult [34].

Data Modeling Even simple features computed from the synthetic datasets
do not accurately model genuine Tor traces. Consider, for example, overall trace
length, a feature shown in prior work to be informative in the WF task [17]. The
top plot in Fig. 6 shows, for all 3 datasets, the distribution of each domain’s
median circuit length (cell count) for circuit traces with at least 1,000 cells and
among those, domains with at least 30 traces. The plot shows that GTT23 traces
tend to be shorter than synthetic dataset traces. GoodEnough traces, in particular,
tend to be much longer than genuine traces: roughly 70% of GoodEnough domains
have a median circuit length of 5,000 cells (the capture limit), whereas this is
true of only 32% of domains in the GTT23 dataset. Inaccurate data modeling
makes it difficult to draw meaningful conclusions from the synthetic datasets [3].
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Intra-class Variance Genuine user traces contain a much richer set of
activity than is generated by synthetic, automated crawls to webpages. Genuine
traces may be generated from various unpredictable user-initiated behaviors
and processes and may reflect complex, interactive sessions with internet hosts,
whereas synthetic traces are usually generated by a single, fixed crawling appli-
cation such as tor-browser-selenium [2] and are limited to simple page accesses.
The middle plot in Fig. 6 shows the distribution of the coefficient of variation of
trace length—that is, the ratio of the trace length’s standard deviation to the
mean—for each dataset’s domains. At nearly every percentile, the coefficient is
higher for GTT23 domains than it is for BigEnough and GoodEnough domains,
suggesting that GTT23 traces exhibit higher variation. The higher variance for
each domain suggests that WF is more difficult on genuine than synthetic traces.

Base Rates Recall that the frequency of website occurrence in the GTT23
dataset is characterized by a few heavy hitters and a long tail of rarely accessed
sites (see Fig. 4). In contrast, the bottom plot of Fig. 6 shows that most domains in
the synthetic datasets occur with much higher frequency. For example, the median
domain occurs with frequency 5 × 10−4 in GTT23. In comparison, the median
domain in the BigEnough and GoodEnough dataset occur with frequencies that
are orders-of-magnitude greater, 1 × 10−2 and 4 × 10−3. Base rate realism is an
important aspect of evaluating WF attacks because increasingly low false positive
rates are needed to maintain precision at low base rates of occurrence [8, 25, 52].
Precisely fingerprinting most websites in GTT23 requires orders-of-magnitude
lower false positives rates compared to BigEnough and GoodEnough.

5 Conclusion

The GTT23 dataset represents the first available collection of genuine Tor cell
traces for research in traffic analysis. It has been available to researchers upon
request since 2004 since [23], and it has already been used to improve our
understanding of WF on Tor. Jansen et al. [24], develop the Retracer methodology
for performing WF analysis on Tor trace datasets that, like GTT23 are collected
at the exit relay. Retracer modifies the traffic traces to appear more as they would
to an adversary observing the client. The results indicate that a WF adversary
is likely to obtain much lower accuracy than synthetic datasets have indicated.
Jansen [20] further develops this methodology. Similarly, Deng et al. [12] use
GTT23 to perform a WF analysis where the adversary is detecting connections
to a monitored set of sites. Their results indicate that the Var-CNN classifier
obtains higher accuracy than the DF classifier used by Jansen et al.

GTT23 also motivates future work to handle the realities of genuine traces.
The appearance of many circuits with few cells requires a WF adversary to
consider how much trace data is sufficient to make a confident claim about
the destination. The existence of non-trivial amounts of non-Web traffic may
motivate new methods to identify the subset of traffic that is to a website at all
before applying WF. Accurate base rates may require a WF adversary to choose
between training for high accuracy averaged over distinct labels or over traces.
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Appendix

A Survey of Existing WF Datasets

We surveyed prior work related to website fingerprinting attacks in order to better
understand the datasets used to quantify attack effectiveness. We evaluated each
dataset among a number of different dimensions, as follows.

Year: the time the dataset was collected;
Activity: the kind of user behavior contained in the dataset;
User model: the way in which users perform the activity;
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Trace generation software: the tools used in activity creation;
Size: the number of classes and traces in the dataset;
Availability: the accessibility of the dataset to others;
Attacks: the WF attacks originally evaluated on the dataset.

We also noted how each dataset was recorded (that is, the software used and
trace observation point, if provided).

The summary of results is shown in Table 2. All datasets surveyed were
composed of primarily web activity. Most datasets assume users interact with
popular websites, usually those present in the now-discontinued “Alexa Internet”
top websites ranking. A few works consider more sophisticated user behaviors:
Herrmann et al. [18] collect URLs obtained from monitoring an academic proxy
server they had access to; Juárez et al. [25] collect URLs obtained from volunteers
browsing the Internet; Panchenko et al. [34] considered URLs obtained from
observing Tor HTTP exit traffic, as well as from interacting with popular Internet
services such as Twitter and Google; and Deng et al. [13] collected URLs from
volunteers browsing the Internet.

The task designated for each dataset may vary. For example, RND-WWW [34],
Juárez et al. [25], GDLF-25 [32], GoodEnough [37], BigEnough [29], ALEXA-
WSC-FG/BG [30], and CW/OW [56] are designed to incorporate multiple pages
for each of many websites. AWF Recollect [40] and WTT-Time [33] are designed
to explore aspects of concept drift. DSTor contains .onion sites in addition
to ordinary websites. Multi-tab [13, 56] contain browsing behavior occurring
simultaneously in several browser tabs.

All extant datasets are collected synthetically with an automated crawl, often
using a single set of software to generate flows (Juárez et al. [25] and Deng et
al. [13] both consider the effect that varying versions of Tor Browser Bundle (TBB)
may have on attacks). Additionally, nearly every work uses tcpdump to collect
packet traces on the client generation machine. Only GoodEnough, BigEnough,
and D(tbs, tor) [21] collect cell traces using the tor process directly; GoodEnough
and BigEnough are collected at the client position, whereas D(tbs, tor) is collected
at the guard position.

Inconsistent purposes, over-simplified user models, and static collection soft-
ware make it difficult to draw meaningful conclusions about the effectiveness of
a WF attack directed at real Tor users. Real Tor clients use a wide variety of
software (most network applications supporting SOCKS5 can be used with Tor),
interact with non-web services, and do more than just non-interactively fetch
random pages on the web. In contrast, GTT23 is the only dataset addressing
these weaknesses—it contains traces from real Tor client interacting with real
internet services. Moreover, GTT23 is larger than the previous largest dataset by
an order of magnitude (AWF CW900 [40]) and is larger than most other existing
datasets by multiples orders of magnitude; this volume of data is important when
training modern deep learning models which may require millions of examples to
be effective.
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Table 2: Summary of website fingerprinting datasets curated over the past 15 years. The ‘⊥’ symbol is used to indicate a dataset is unnamed, and the
‘-’ symbol is used when a cell’s contents are identical to the above cell. When the year of data collection is not mentioned, we assume it is around (“ca.”)
the associated article’s publication date. Not all datasets describe their trace generation software with the same specificity. N ,NC ,NI ,NBg are the
total number of traces in the dataset, the number of positive classes, the number of instances per positive class, and the number of background traces.
The “Attacks” column shows a list of WF attack papers evaluated on the dataset.

Ref. Name Year Activity Activity Detailed User Model Trace Gen.
Software N NC NI NBg Available Attacks

[18] ⊥ (Hermann) 2008 Web
Links from real-world academic
proxy server Index page Autofox 8.5×103 775 ≈10 Dead link � [18]

[9] ⊥ (Cai) Ca. 2012 Web Alexa top sites Index page tor 0.2.1/2 3.2×104 800 ≈40 No [9]

[54] levdata2 Ca. 2013 Web Alexa top sites Index page tor 0.2.4.7;
TBB 2.4.7 4 ×103 100 40 Online � [34, 54]

- levdata3 - -
Popular blocked sites, Alexa top
sites

- - 9 ×102 4 10 8.6×102 - -

[53] k-NN Ca. 2014 Web Sensitive sites, Alexa top sites Index page TBB 3.5.1;
iMacros 8.6.0 1.4×104 100 90 5 ×103 Online �

[1, 33, 34,
44,

53–55]

[25] ⊥ (Juárez) Ca. 2014 Web
Alexa top sites, volunteer
browsing

Index page,
visited pages

TBB (2/3.X);
Selenium 4.3×104 200 ≈40 3.5×104 On request [25]

[55] ⊥ (Wang) 2014 Web Sensitive sites, Alexa top sites Index page tor 0.3.6.4;
TBB 3.6.4 9 ×103 100 40 5 ×103 No [55]

[34] RND-WWW Ca. 2016 Web
Twitter, Alexa one-click, Google
Trends, Google Random,
censored sites

Random
subpage

TBB 3.6.1;
Chickenfoot;
iMacros; Scriptish

1.6×105 1,125 40 1.2×105 Dead link � [34]

- TOR-Exit - - HTTP requests of real Tor users Visited page - 2.1×105 2.1×105 - -

- WEBSITES - - Popular websites
Index page,
random
subpage

- 5.3×103 50 105 - -

[17] DSTor Ca. 2016 Web
Alexa top sites, popular .onion
sites Index page TBB; Selenium 1.1×105 85 ≈90 1 ×105 Dead link � [17, 33]

[40] AWF CW 900 2017 Web Alexa top sites Index page tor 0.2.8.11;
TBB 6.5; Selenium 2.3×106 900 2,500 Online �

[5, 32, 33,
40, 44]

- AWF Recollect - - - - - 1 ×105 200 500 - -
- AWF Open - - - - - 8 ×105 200 2,000 4 ×105 - -

[43] DF Ca. 2018 Web Alexa top sites Index page tor-browser-
selenium 1.4×105 95 1,000 4.1×104 Online �

[32, 39,
43, 44]

[33] WTT-time 2018 Web Alexa top sites Index page tor 0.4.0.8;
tor-browser-crawler 8 ×104 100 300 5 ×104 On request [33]

[37] Good Enough 2020 Web Alexa top pages, random subpage Index page TBB 9.0.2 2 ×104 500 20 1 ×104 Online �

[52] ⊥ (Wang) 2019 Web Alexa top sites Index page tor 0.4.0.1;
TBB 8.5a7 1 ×105 100 200 8 ×104 Partially Online � [52]

- Wikipedia - - Wikipedia browsing Random
subpage

- 2 ×104 100 100 1 ×104 - -

[32] GDLF-25 Ca. 2021 Web Alexa top sites Random
subpage tor-browser-crawler 9.4×104 2,400 39 On request [32]

- GDLF-OW - - Links from Rimmer et al. [40] Random
subpage

- 7 ×104 7 ×104 - -

[29] BigEnough 2021 Web Open PageRank top pages Index page TBB 3.8×104 950 20 1.9×104 On request

[13] Multi-tab 2022 Web Alexa top pages Index page
(multi-tab) TBB; Selenium 5.7×105 Online � [13]

[21] D(tbs, tor) 2022 Web Wikipedia browsing Random
subpage

tor-browser-
selenium 2 ×104 98 200 Online �

[4] Drift Ca. 2023 Web
Popular websites, links from
Rimmer et al. [40] Index page

TBB 11.0.10;
tor-browser-
selenium 0.6.3

1.5×104 90 ≈110 5 ×103 Online � [4]

GTT23 2023 Any Real Tor usage Visited
service Real client software 1.4×107 ⟨ 1.1 × 106 domains ⟩ On request

[30] ALEXA-WSC-FG/BG Ca. 2024 Web Alexa top sites, random subpage Random
subpage TBB 7.5.6 8.6×105 9,000 90 4.5×104 No [30]

[56] CW/OW Ca. 2024 Web Alexa top sites, random subpage
Random
subpage
(multi-tab)

TBB 8.1×104 1,000 10 9.3×103 Online � [56]

[42] D1–D7 2024 Web Tranco top sites Index page TBB 10.5; Chrome
112.0 7.4×105 100 700 4.00×103 Online � [42]
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