
Reducing Kernel Queuing Delays with TCP Window Space Events

David Goulet
The Tor Project

dgoulet@torproject.org

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Abstract
The combination of TCP auto-tuning and asynchronous I/O
event notifications (e.g., epoll) allows the Linux kernel to
generally sustain high-volume TCP connections—even for
connections with high bandwidth-delay products (high link
bandwidth and/or high path latency). However, bufferbloat
can quickly become an issue when multiple such connec-
tions are in use. In particular, high outbound kernel queuing
delays have been observed in the Tor anonymity network,
a large distributed system whose relays often manage thou-
sands of sockets—many of which are simultaneously-active,
high-volume TCP connections.

In this work, we propose a new notification event that trig-
gers when TCP is ready to send data on a socket while seeking
to better understand how it can help applications to better man-
age network I/O and improve performance. The new event
supplements and extends the current write event that triggers
when a socket buffer has free space, and the difference in
semantics allows more precise control over queuing to the
application. We describe the problem, detail a proposal for
extending epoll to support the new semantics (including a
code patch), and show the effect that such a change could
have on performance through a small scale simulation.

1 Introduction

High performance networking applications require facilities
that allow for precise interactions between user space and
kernel space. In order for a network application to reach high
throughput, it needs to ensure that the kernel buffers associ-
ated with a network socket have enough data so that the kernel
can package and send packets on demand.

The state of a socket can generally be managed using an
I/O event notification facility such as epoll: the application
creates an epoll descriptor and uses it to “listen” for when the
socket becomes readable (the EPOLLIN event) and writable
(the EPOLLOUT event). The application uses the “socket is
writable” event notification to trigger the continued writing of

data from user-space into the kernel such that the kernel is not
starved of data (the socket buffer has enough data available
when the kernel wants to send). The kernel then attempts to
maximize the TCP sending rate by using TCP auto-tuning to
monotonically increase the size of the write buffer over time,
ensuring that TCP can keep a full bandwidth-delay product
worth of bytes in flight.
Bufferbloat: Although the epoll facility works well for
maintaining high sending rates (there is always enough data
for the kernel to send when it can), it has also been shown to
result in bufferbloat and high kernel queuing times [3]. This
is a particular problem for nodes in large distributed systems
like the Tor anonymity network [1] that may have thousands
of sockets open at any time. Large kernel outbound queuing
delays were observed at Tor relays as they would attempt to
keep all of the socket buffers full whenever EPOLLOUT events
were triggered, but the link rates of the relays were not high
enough to send all of the data that Tor was writing to the kernel
socket write buffers [4]. This bufferbloat problem was identi-
fied, measured, and shown to harm Tor’s ability to maintain
control over traffic priority [4].
TCP Window Space: We would like to provide more control
over when the socket write event is delivered by the kernel in
order to allow applications with many sockets to reduce and
control kernel bufferbloat. We propose to add a new feature
to the epoll event notification facility that causes EPOLLOUT
events to be triggered when TCP is ready to send data rather
than when a socket buffer has free space. This is done by
calculating the number of bytes that are needed to fill the
TCP congestion window; if the number of such bytes are
greater than a configurable threshold, we trigger an EPOLLOUT
event on the socket. The application can then proceed to write
enough bytes to fill the window, thus reducing the kernel
outbound buffer lengths.
Outline: We next describe some previous work that employed
the TCP window space concept in §2. We then specify the
kernel changes necessary to implement our proposal in §3.
Finally, we describe the results from a small-scale simulation
of the concept in §4 before concluding in §5.

1

2 Related Work

Bufferbloat in Tor: Researchers from the Tor community
designed [3], developed [4], and deployed [6] an algorithm
called KIST (Kernel-Informed Socket Transport) to mitigate
the congestion caused by overfull buffers. The main idea of
KIST is to limit the number of bytes written to a socket buffer
to only the number of bytes that TCP is willing to send out
onto the network, reducing kernel queuing and increasing
Tor’s control over data priority.

The KIST algorithm works by continuously (every 10 ms)
tracking the TCP state on the active sockets opened by
Tor using calls to getsockopt on level TCP_SOL for option
TCP_INFO. Then, KIST computes a write limit for each socket:

tcp_space← (cwnd−una) ·mss (1)

write_limit← tcp_space−notsent (2)

where mss is the maximum segment size, cwnd is the number
of packets in the congestion window, una is the number of
unacked packets, and notsent is the number of bytes written
to the socket buffer that have not yet been sent. The write
limit ensures that the kernel will be able to immediately send
any data the application is writing, and it has been shown
to significantly reduce outbound kernel buffering time by
reducing write buffer lengths [4].

The KIST idea is well-reasoned: there may be no need to
send large amounts of data to kernel buffers if TCP will pre-
vent it from being sent out anyway. However, the method that
KIST uses to achieve its result is not ideal for the following
reasons:
• continuously polling sockets for TCP_INFO is a nonopti-

mal solution that does not scale (requires many syscalls);
• the information that the application obtains may quickly

become stale as new packets arrive in the kernel; and
• it takes up to a full polling interval (10 ms) before TCP

state changes are recognized by the application.
Therefore, the application has to write more than the
tcp_space to ensure that the kernel has data to send when
previously sent data becomes acknowledged by the receiver.

We strive for a more elegant solution (fewer syscalls) that
is implemented in kernel space so that any application that
wants more control over bloated outbound buffers can benefit.
Related Kernel Functionality: Since the development of
KIST, a related feature has been developed and deployed in
the Linux kernel that allows an application to adjust when
it receives EPOLLOUT events from the kernel. The feature is
set with the TCP option TCP_NOTSENT_LOWAT and will cause
the kernel to report EPOLLOUT event only if the number of
notsent bytes (bytes written to the socket but not yet sent to the
network) is below the lowater setting: i.e., it reports EPOLLOUT
when the buffer is almost empty (ignoring TCP). This is
distinct from the KIST approach in two significant ways:
• TCP_NOTSENT_LOWAT considers the number of notsent

bytes in the socket buffer, whereas KIST considers the

number of bytes in the socket buffer in addition to the
TCP congestion window. In particular, KIST considers
the TCP congestion window (cwnd) and the number of
packets that have been sent but not yet acknowledged
(una), and only report EPOLLOUT when TCP would ac-
tually be capable of sending packets. This is important
in the case when the number of notsent bytes is low, but
TCP will still prevent sending packets because cwnd is
closed or because it is waiting for ACKs.
• TCP_NOTSENT_LOWAT will always report EPOLLOUT if

notsent bytes is below the lowater threshold. Our pro-
posal in §3 is to report EPOLLOUT only if TCP can send
data (see above) and we will be able to write at least a
configurable minimum number of bytes.

Tor relays have thousands of open TCP connections, many
of which are long-lived and whose congestion state is highly
dynamic over time. We believe that our proposal will better
address this use-case.

3 Design

We propose to add a new feature to the epoll event notifi-
cation facility that causes EPOLLOUT events to be triggered
when the number of bytes required to fill the TCP window is
greater than some threshold value w.

To each TCP socket in struct tcp_sock we add a new
state variable called pollout_window_min_len; this vari-
able simultaneously indicates if the socket is in our new TCP
window polling mode and also stores the value of the thresh-
old w. The user enables TCP window polling mode through a
call to setsockopt with a positive value for the new option
TCP_POLLOUT_WIN_LEN, which the kernel will store in the
new pollout_window_min_len variable.

When the kernel polls the I/O status of sockets as usual
in tcp_poll and the value of pollout_window_min_len is
positive, it computes the space available in the TCP window
following Equation 1:

space← (snd_cwnd− sk_ack_backlog) ·mss_cache

and an EPOLLOUT event will only be emitted if the com-
puted space is at least pollout_window_min_len.

Please refer to Appendix A for a full code listing of a
relatively small kernel patch required to implement our design
as described above.

4 Experiment

To test our proposed modification to the epoll facility, we ran a
small-scale simulation using the Shadow simulator [2] and its
TGen traffic generator [5]. Shadow is a hybrid discrete-event
network simulator that directly executes applications in a net-
work simulation environment. We configured our Shadow
experiment to run a single TGen server with 100 Mbit/s sym-
metric bandwidth. We also configured 25 TGen clients that

2

(a) CDF of Ping RTT (b) Ping RTT over Time (c) Server Throughput over Time
Figure 1: Round trip times through the server as measured from the TGen ping clients, and server throughput over time.

repeatedly download 10 MiB files, pausing after each down-
load completes for a time selected uniformly at random from
the range [1,3] seconds. Finally, we configured a single TGen
ping client that attempts to measure RTT through the server us-
ing a TCP connection, pausing for 1 second after completing
each measurement. All clients were placed in random cities in
Shadow’s global Internet map (which models Internet latency
according to RIPE Atlas measurements [5]), and the server
was placed at a random city in the US. The experiment was
configured to run for 10 simulated minutes.

We ran the experiment 3 times, once using the traditional
epoll semantics where an EPOLLOUT event is emitted when-
ever there is positive buffer space, once with the related not-
sent lowat kernel feature, and once using our proposed design
that emits EPOLLOUT whenever the TCP space is greater than
a threshold as described in Section 3. We set tcp_notsent
lowat to 1 byte and pollout_window_min_len to the max-
imum segment size in our experiments. The primary results
of the experiments are shown in Figure 1.

Figure 1a shows that the round trip time through the server
is significantly reduced—by more than 2 seconds in the
median—when the server is configured to emit EPOLLOUT
based on the TCP window space rather than the buffer space.
The same data is again shown in Figure 1b, showing how
the round trip time measurements vary over time throughout
the 10 minute (600 second) experiments. Finally, Figure 1c
shows that the server maintained near full link utilization
(100 Mbit/s) throughout both experiments.

5 Conclusion

Our results show that significant improvements in respon-
siveness may be possible for some applications, confirming
indications from previous work on the Tor anonymity net-
work [4]. We observed that our proposed design works as
well as the existing notsent lowat feature in this small-scale
experiment. Although our experiments are based on simula-
tion, we believe that our proposed modification to the epoll
event notification facility could be beneficial to many appli-

cations who want more control over the buffering behavior
in the kernel. Further testing in a deployed Linux kernel is
required to better understand the performance trade-offs. In
the meantime, we hope to collect feedback on our current
design and code patch and better understand the path forward
for getting the code successfully merged.

Acknowledgments

This work was supported by the Office of Naval Research.

References

[1] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security
Symposium, 2004.

[2] R. Jansen and N. Hopper. Shadow: Running Tor in
a Box for Accurate and Efficient Experimentation. In
Network and Distributed System Security Symposium
(NDSS), 2012.

[3] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syver-
son. Never Been KIST: Tor’s Congestion Management
Blossoms with Kernel-Informed Socket Transport. In
USENIX Security Symposium, 2014.

[4] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport for
Tor. ACM Transactions on Privacy and Security (TOPS),
22(1):3:1–3:37, December 2018.

[5] R. Jansen, M. Traudt, and N. Hopper. Privacy-preserving
dynamic learning of Tor network traffic. In 25th ACM
Conference on Computer and Communications Secu-
rity (CCS), 2018. See also https://tmodel-ccs2018.
github.io.

[6] The Tor Project. KIST and Tell: Tor’s New Traffic
Scheduling Feature. https://blog.torproject.org/
kist-and-tell-tors-new-traffic-scheduling-
feature, October 2017. Blog Post.

3

https://tmodel-ccs2018.github.io
https://tmodel-ccs2018.github.io
https://blog.torproject.org/kist-and-tell-tors-new-traffic-scheduling-feature
https://blog.torproject.org/kist-and-tell-tors-new-traffic-scheduling-feature
https://blog.torproject.org/kist-and-tell-tors-new-traffic-scheduling-feature

A Kernel Patch Code Listing

DISTRIBUTION STATEMENT: Approved for public release: distribution unlimited.
Redistributions of source and binary forms, with or without modification, are permitted if redistributions retain the above
distribution statement and the following disclaimer.
DISCLAIMER: The software is supplied “as is” without warranty of any kind.
As the owner of the software, the United States, the United States Department of Defense, and their employees:

1. disclaim any warranties, express or implied, including but not limited to any implied warranties of merchantability, fitness
for a particular purpose, title or non-infringement,

2. do not assume any legal liability or responsibility for the accuracy, completeness, or usefulness of the software,
3. do not represent that use of the software would not infringe privately owned rights,
4. do not warrant that the software will function uninterrupted, that it is error-free or that any errors will be corrected.
Portions of the software resulted from work developed by or for the U.S. Government subject to the following license: the

Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this
computer software to reproduce, prepare derivative works, to perform or display any portion of that work, and to permit others to
do so for Government purposes.

diff --git a/include/linux/tcp.h b/include/linux/tcp.h
index a9b0280687d5 ..54 f2dbb9730f 100644
--- a/include/linux/tcp.h
+++ b/include/linux/tcp.h
@@ -401,6 +401,8 @@ struct tcp_sock {

*/
struct request_sock *fastopen_rsk;
u32 *saved_syn;

+
+ u32 pollout_window_min_len;
};

enum tsq_enum {
diff --git a/include/uapi/linux/tcp.h b/include/uapi/linux/tcp.h
index e02d31986ff9..a68e662bf109 100644
--- a/include/uapi/linux/tcp.h
+++ b/include/uapi/linux/tcp.h
@@ -124,8 +124,9 @@ enum {
#define TCP_FASTOPEN_NO_COOKIE 34 /* Enable TFO without a TFO cookie */
#define TCP_ZEROCOPY_RECEIVE 35
#define TCP_INQ 36 /* Notify bytes available to read as a cmsg on read */

+#define TCP_POLLOUT_WIN_LEN 37 /* POLLOUT event is based on TCP out queue. */

-#define TCP_CM_INQ TCP_INQ
+#define TCP_CM_INQ TCP_POLLOUT_WIN_LEN

#define TCP_REPAIR_ON 1
#define TCP_REPAIR_OFF 0

diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c
index 40cbe5609663..1e36091c1562 100644
--- a/net/ipv4/tcp.c
+++ b/net/ipv4/tcp.c
@@ -493,6 +493,19 @@ static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,

sk->sk_prot ->stream_memory_read(sk) : false);
}

+static inline bool tcp_stream_window_has_space(const struct tcp_sock *tp,
+ struct sock *sk)
+{
+ /* This computes how much room we have before we hit the limit of the
+ * congestion window. The idea for this is to take the congestion window

4

+ * size minus the unacked packet times the segment window size.
+ *
+ * It results in how much more we can put in the window before reaching
+ * its limit. */
+ u64 window_space = (tp->snd_cwnd - sk->sk_ack_backlog) * tp->mss_cache;
+ return (window_space >= tp->pollout_window_min_len);
+}
+
/*
* Wait for a TCP event.
*

@@ -566,7 +579,12 @@ __poll_t tcp_poll(struct file *file , struct socket *sock , poll_table *wait)
mask |= EPOLLIN | EPOLLRDNORM;

if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
- if (sk_stream_is_writeable(sk)) {
+ /* If the socket has been set to wakeup if the TCP out queue has
+ * enough room for the user defined length. */
+ if (tp->pollout_window_min_len > 0 &&
+ tcp_stream_window_has_space(tp, sk) &&
+ sk_stream_is_writeable(sk)) {
+ mask |= EPOLLOUT | EPOLLWRNORM;
+ } else if (tp->pollout_window_min_len == 0 &&
+ sk_stream_is_writeable(sk)) {

mask |= EPOLLOUT | EPOLLWRNORM;
} else { /* send SIGIO later */

sk_set_bit(SOCKWQ_ASYNC_NOSPACE , sk);
@@ -3054,6 +3072,12 @@ static int do_tcp_setsockopt(struct sock *sk, int level ,

else
tp->recvmsg_inq = val;

break;
+ case TCP_POLLOUT_WIN_LEN:
+ if (val < 0)
+ err = -EINVAL;
+ else
+ tp->pollout_window_min_len = val;
+ break;

default:
err = -ENOPROTOOPT;
break;

5

	Introduction
	Related Work
	Design
	Experiment
	Conclusion
	Kernel Patch Code Listing

